Configuration Manual

version 2.4.28-1

2024/11/08

This document covers the configuration language as implemented in the version
specified above. It does not provide any hints, examples, or advice. For such
documentation, please refer to the Reference Manual or the Architecture Manual.
The summary below is meant to help you find sections by name and navigate
through the document.

Note to documentation contributors :
    This document is formatted with 80 columns per line, with even number of
    spaces for indentation and without tabs. Please follow these rules strictly
    so that it remains easily printable everywhere. If a line needs to be
    printed verbatim and does not fit, please end each line with a backslash
    ('\') and continue on next line, indented by two characters. It is also
    sometimes useful to prefix all output lines (logs, console outputs) with 3
    closing angle brackets ('>>>') in order to emphasize the difference between
    inputs and outputs when they may be ambiguous. If you add sections,
    please update the summary below for easier searching.
1. Quick reminder about HTTP
1.1.
1.2.
1.2.1.
1.2.2.
1.3.
1.3.1.
1.3.2.

2.

Configuring HAProxy
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

3.

Global parameters
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.

4.

Proxies
4.1.
4.2.

5.

Bind and server options
5.1.
5.2.
5.3.
5.3.1.
5.3.2.

6.

Cache
6.1.
6.2.
6.2.1.
6.2.2.

7.

Using ACLs and fetching samples
7.1.
7.1.1.
7.1.2.
7.1.3.
7.1.4.
7.1.5.
7.1.6.
7.2.
7.3.
7.3.1.
7.3.2.
7.3.3.
7.3.4.
7.3.5.
7.3.6.
7.3.7.
7.4.

8.

Logging
8.1.
8.2.
8.2.1.
8.2.2.
8.2.3.
8.2.4.
8.2.5.
8.3.
8.3.1.
8.3.2.
8.3.3.
8.3.4.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

9.

Supported filters
9.1.
9.2.
9.3.
9.4.
9.5.
9.6.

10.

FastCGI applications
10.1.
10.1.1.
10.1.2.
10.1.3.
10.2.
10.3.

11.

Address formats
11.1.
11.2.
11.3.
When HAProxy is running in HTTP mode, both the request and the response are
fully analyzed and indexed, thus it becomes possible to build matching criteria
on almost anything found in the contents.

However, it is important to understand how HTTP requests and responses are
formed, and how HAProxy decomposes them. It will then become easier to write
correct rules and to debug existing configurations.

1.1. The HTTP transaction model

The HTTP protocol is transaction-driven. This means that each request will lead
to one and only one response. Traditionally, a TCP connection is established
from the client to the server, a request is sent by the client through the
connection, the server responds, and the connection is closed. A new request
will involve a new connection :

  [CON1] [REQ1] ... [RESP1] [CLO1] [CON2] [REQ2] ... [RESP2] [CLO2] ...

In this mode, called the "HTTP close" mode, there are as many connection
establishments as there are HTTP transactions. Since the connection is closed
by the server after the response, the client does not need to know the content
length.

Due to the transactional nature of the protocol, it was possible to improve it
to avoid closing a connection between two subsequent transactions. In this mode
however, it is mandatory that the server indicates the content length for each
response so that the client does not wait indefinitely. For this, a special
header is used: "Content-length". This mode is called the "keep-alive" mode :

  [CON] [REQ1] ... [RESP1] [REQ2] ... [RESP2] [CLO] ...

Its advantages are a reduced latency between transactions, and less processing
power required on the server side. It is generally better than the close mode,
but not always because the clients often limit their concurrent connections to
a smaller value.

Another improvement in the communications is the pipelining mode. It still uses
keep-alive, but the client does not wait for the first response to send the
second request. This is useful for fetching large number of images composing a
page :

  [CON] [REQ1] [REQ2] ... [RESP1] [RESP2] [CLO] ...

This can obviously have a tremendous benefit on performance because the network
latency is eliminated between subsequent requests. Many HTTP agents do not
correctly support pipelining since there is no way to associate a response with
the corresponding request in HTTP. For this reason, it is mandatory for the
server to reply in the exact same order as the requests were received.

The next improvement is the multiplexed mode, as implemented in HTTP/2. This
time, each transaction is assigned a single stream identifier, and all streams
are multiplexed over an existing connection. Many requests can be sent in
parallel by the client, and responses can arrive in any order since they also
carry the stream identifier.

By default HAProxy operates in keep-alive mode with regards to persistent
connections: for each connection it processes each request and response, and
leaves the connection idle on both sides between the end of a response and the
start of a new request. When it receives HTTP/2 connections from a client, it
processes all the requests in parallel and leaves the connection idling,
waiting for new requests, just as if it was a keep-alive HTTP connection.

HAProxy supports 4 connection modes :
  - keep alive    : all requests and responses are processed (default)
  - tunnel        : only the first request and response are processed,
                    everything else is forwarded with no analysis (deprecated).
  - server close  : the server-facing connection is closed after the response.
  - close         : the connection is actively closed after end of response.

1.2. HTTP request

First, let's consider this HTTP request :

  Line     Contents
  number
     1     GET /serv/login.php?lang=en&profile=2 HTTP/1.1
     2     Host: www.mydomain.com
     3     User-agent: my small browser
     4     Accept: image/jpeg, image/gif
     5     Accept: image/png

1.2.1. The Request line

Line 1 is the "request line". It is always composed of 3 fields :

  - a METHOD      : GET
  - a URI         : /serv/login.php?lang=en&profile=2
  - a version tag : HTTP/1.1

All of them are delimited by what the standard calls LWS (linear white spaces),
which are commonly spaces, but can also be tabs or line feeds/carriage returns
followed by spaces/tabs. The method itself cannot contain any colon (':') and
is limited to alphabetic letters. All those various combinations make it
desirable that HAProxy performs the splitting itself rather than leaving it to
the user to write a complex or inaccurate regular expression.

The URI itself can have several forms :

  - A "relative URI" :

      /serv/login.php?lang=en&profile=2

    It is a complete URL without the host part. This is generally what is
    received by servers, reverse proxies and transparent proxies.

  - An "absolute URI", also called a "URL" :

      http://192.168.0.12:8080/serv/login.php?lang=en&profile=2

    It is composed of a "scheme" (the protocol name followed by '://'), a host
    name or address, optionally a colon (':') followed by a port number, then
    a relative URI beginning at the first slash ('/') after the address part.
    This is generally what proxies receive, but a server supporting HTTP/1.1
    must accept this form too.

  - a star ('*') : this form is only accepted in association with the OPTIONS
    method and is not relayable. It is used to inquiry a next hop's
    capabilities.

  - an address:port combination : 192.168.0.12:80
    This is used with the CONNECT method, which is used to establish TCP
    tunnels through HTTP proxies, generally for HTTPS, but sometimes for
    other protocols too.

In a relative URI, two sub-parts are identified. The part before the question
mark is called the "path". It is typically the relative path to static objects
on the server. The part after the question mark is called the "query string".
It is mostly used with GET requests sent to dynamic scripts and is very
specific to the language, framework or application in use.

HTTP/2 doesn't convey a version information with the request, so the version is
assumed to be the same as the one of the underlying protocol (i.e. "HTTP/2").

1.2.2. The request headers

The headers start at the second line. They are composed of a name at the
beginning of the line, immediately followed by a colon (':'). Traditionally,
an LWS is added after the colon but that's not required. Then come the values.
Multiple identical headers may be folded into one single line, delimiting the
values with commas, provided that their order is respected. This is commonly
encountered in the "Cookie:" field. A header may span over multiple lines if
the subsequent lines begin with an LWS. In the example in 1.2, lines 4 and 5
define a total of 3 values for the "Accept:" header.

Contrary to a common misconception, header names are not case-sensitive, and
their values are not either if they refer to other header names (such as the
"Connection:" header). In HTTP/2, header names are always sent in lower case,
as can be seen when running in debug mode. Internally, all header names are
normalized to lower case so that HTTP/1.x and HTTP/2 use the exact same
representation, and they are sent as-is on the other side. This explains why an
HTTP/1.x request typed with camel case is delivered in lower case.

The end of the headers is indicated by the first empty line. People often say
that it's a double line feed, which is not exact, even if a double line feed
is one valid form of empty line.

Fortunately, HAProxy takes care of all these complex combinations when indexing
headers, checking values and counting them, so there is no reason to worry
about the way they could be written, but it is important not to accuse an
application of being buggy if it does unusual, valid things.

Important note:
   As suggested by RFC7231, HAProxy normalizes headers by replacing line breaks
   in the middle of headers by LWS in order to join multi-line headers. This
   is necessary for proper analysis and helps less capable HTTP parsers to work
   correctly and not to be fooled by such complex constructs.

1.3. HTTP response

An HTTP response looks very much like an HTTP request. Both are called HTTP
messages. Let's consider this HTTP response :

  Line     Contents
  number
     1     HTTP/1.1 200 OK
     2     Content-length: 350
     3     Content-Type: text/html

As a special case, HTTP supports so called "Informational responses" as status
codes 1xx. These messages are special in that they don't convey any part of the
response, they're just used as sort of a signaling message to ask a client to
continue to post its request for instance. In the case of a status 100 response
the requested information will be carried by the next non-100 response message
following the informational one. This implies that multiple responses may be
sent to a single request, and that this only works when keep-alive is enabled
(1xx messages are HTTP/1.1 only). HAProxy handles these messages and is able to
correctly forward and skip them, and only process the next non-100 response. As
such, these messages are neither logged nor transformed, unless explicitly
state otherwise. Status 101 messages indicate that the protocol is changing
over the same connection and that HAProxy must switch to tunnel mode, just as
if a CONNECT had occurred. Then the Upgrade header would contain additional
information about the type of protocol the connection is switching to.

1.3.1. The response line

Line 1 is the "response line". It is always composed of 3 fields :

  - a version tag : HTTP/1.1
  - a status code : 200
  - a reason      : OK

The status code is always 3-digit. The first digit indicates a general status :
 - 1xx = informational message to be skipped (e.g. 100, 101)
 - 2xx = OK, content is following   (e.g. 200, 206)
 - 3xx = OK, no content following   (e.g. 302, 304)
 - 4xx = error caused by the client (e.g. 401, 403, 404)
 - 5xx = error caused by the server (e.g. 500, 502, 503)

Please refer to RFC7231 for the detailed meaning of all such codes. The
"reason" field is just a hint, but is not parsed by clients. Anything can be
found there, but it's a common practice to respect the well-established
messages. It can be composed of one or multiple words, such as "OK", "Found",
or "Authentication Required".

HAProxy may emit the following status codes by itself :

  Code  When / reason
   200  access to stats page, and when replying to monitoring requests
   301  when performing a redirection, depending on the configured code
   302  when performing a redirection, depending on the configured code
   303  when performing a redirection, depending on the configured code
   307  when performing a redirection, depending on the configured code
   308  when performing a redirection, depending on the configured code
   400  for an invalid or too large request
   401  when an authentication is required to perform the action (when
        accessing the stats page)
   403  when a request is forbidden by a "http-request deny" rule
   404  when the requested resource could not be found
   408  when the request timeout strikes before the request is complete
   410  when the requested resource is no longer available and will not
        be available again
   500  when HAProxy encounters an unrecoverable internal error, such as a
        memory allocation failure, which should never happen
   501 when HAProxy is unable to satisfy a client request because of an
       unsupported feature
   502  when the server returns an empty, invalid or incomplete response, or
        when an "http-response deny" rule blocks the response.
   503  when no server was available to handle the request, or in response to
        monitoring requests which match the "monitor fail" condition
   504  when the response timeout strikes before the server responds

The error 4xx and 5xx codes above may be customized (see "errorloc" in section
4.2).

1.3.2. The response headers

Response headers work exactly like request headers, and as such, HAProxy uses
the same parsing function for both. Please refer to paragraph 1.2.2 for more
details.

2.1. Configuration file format

HAProxy's configuration process involves 3 major sources of parameters :

  - the arguments from the command-line, which always take precedence
  - the configuration file(s), whose format is described here
  - the running process's environment, in case some environment variables are
    explicitly referenced

The configuration file follows a fairly simple hierarchical format which obey
a few basic rules:

  1. a configuration file is an ordered sequence of statements

  2. a statement is a single non-empty line before any unprotected "#" (hash)

  3. a line is a series of tokens or "words" delimited by unprotected spaces or
     tab characters

  4. the first word or sequence of words of a line is one of the keywords or
     keyword sequences listed in this document

  5. all other words are all arguments of the first one, some being well-known
     keywords listed in this document, others being values, references to other
     parts of the configuration, or expressions

  6. certain keywords delimit a section inside which only a subset of keywords
     are supported

  7. a section ends at the end of a file or on a special keyword starting a new
     section

This is all that is needed to know to write a simple but reliable configuration
generator, but this is not enough to reliably parse any configuration nor to
figure how to deal with certain corner cases.

First, there are a few consequences of the rules above. Rule 6 and 7 imply that
the keywords used to define a new section are valid everywhere and cannot have
a different meaning in a specific section. These keywords are always a single
word (as opposed to a sequence of words), and traditionally the section that
follows them is designated using the same name. For example when speaking about
the "global section", it designates the section of configuration that follows
the "global" keyword. This usage is used a lot in error messages to help locate
the parts that need to be addressed.

A number of sections create an internal object or configuration space, which
requires to be distinguished from other ones. In this case they will take an
extra word which will set the name of this particular section. For some of them
the section name is mandatory. For example "frontend foo" will create a new
section of type "frontend" named "foo". Usually a name is specific to its
section and two sections of different types may use the same name, but this is
not recommended as it tends to complexify configuration management.

A direct consequence of rule 7 is that when multiple files are read at once,
each of them must start with a new section, and the end of each file will end
a section. A file cannot contain sub-sections nor end an existing section and
start a new one.

Rule 1 mentioned that ordering matters. Indeed, some keywords create directives
that can be repeated multiple times to create ordered sequences of rules to be
applied in a certain order. For example "tcp-request" can be used to alternate
"accept" and "reject" rules on varying criteria. As such, a configuration file
processor must always preserve a section's ordering when editing a file. The
ordering of sections usually does not matter except for the global section
which must be placed before other sections, but it may be repeated if needed.
In addition, some automatic identifiers may automatically be assigned to some
of the created objects (e.g. proxies), and by reordering sections, their
identifiers will change. These ones appear in the statistics for example. As
such, the configuration below will assign "foo" ID number 1 and "bar" ID number
2, which will be swapped if the two sections are reversed:

     listen foo
         bind :80

     listen bar
         bind :81

Another important point is that according to rules 2 and 3 above, empty lines,
spaces, tabs, and comments following and unprotected "#" character are not part
of the configuration as they are just used as delimiters. This implies that the
following configurations are strictly equivalent:

         global#this is the global section
     daemon#daemonize
         frontend         foo
     mode             http   # or tcp

and:

     global
         daemon

     # this is the public web frontend
     frontend foo
         mode http

The common practice is to align to the left only the keyword that initiates a
new section, and indent (i.e. prepend a tab character or a few spaces) all
other keywords so that it's instantly visible that they belong to the same
section (as done in the second example above). Placing comments before a new
section helps the reader decide if it's the desired one. Leaving a blank line
at the end of a section also visually helps spotting the end when editing it.

Tabs are very convenient for indent but they do not copy-paste well. If spaces
are used instead, it is recommended to avoid placing too many (2 to 4) so that
editing in field doesn't become a burden with limited editors that do not
support automatic indent.

In the early days it used to be common to see arguments split at fixed tab
positions because most keywords would not take more than two arguments. With
modern versions featuring complex expressions this practice does not stand
anymore, and is not recommended.

2.2. Quoting and escaping

In modern configurations, some arguments require the use of some characters
that were previously considered as pure delimiters. In order to make this
possible, HAProxy supports character escaping by prepending a backslash ('\')
in front of the character to be escaped, weak quoting within double quotes
('"') and strong quoting within single quotes ("'").

This is pretty similar to what is done in a number of programming languages and
very close to what is commonly encountered in Bourne shell. The principle is
the following: while the configuration parser cuts the lines into words, it
also takes care of quotes and backslashes to decide whether a character is a
delimiter or is the raw representation of this character within the current
word. The escape character is then removed, the quotes are removed, and the
remaining word is used as-is as a keyword or argument for example.

If a backslash is needed in a word, it must either be escaped using itself
(i.e. double backslash) or be strongly quoted.

Escaping outside quotes is achieved by preceding a special character by a
backslash ('\'):

  \    to mark a space and differentiate it from a delimiter
  \#   to mark a hash and differentiate it from a comment
  \\   to use a backslash
  \'   to use a single quote and differentiate it from strong quoting
  \"   to use a double quote and differentiate it from weak quoting

In addition, a few non-printable characters may be emitted using their usual
C-language representation:

  \n   to insert a line feed (LF, character \x0a or ASCII 10 decimal)
  \r   to insert a carriage return (CR, character \x0d or ASCII 13 decimal)
  \t   to insert a tab (character \x09 or ASCII 9 decimal)
  \xNN to insert character having ASCII code hex NN (e.g \x0a for LF).

Weak quoting is achieved by surrounding double quotes ("") around the character
or sequence of characters to protect. Weak quoting prevents the interpretation
of:

       space or tab as a word separator
  '    single quote as a strong quoting delimiter
  #    hash as a comment start

Weak quoting permits the interpretation of environment variables (which are not
evaluated outside of quotes) by preceding them with a dollar sign ('$'). If a
dollar character is needed inside double quotes, it must be escaped using a
backslash.

Strong quoting is achieved by surrounding single quotes ('') around the
character or sequence of characters to protect. Inside single quotes, nothing
is interpreted, it's the efficient way to quote regular expressions.

As a result, here is the matrix indicating how special characters can be
entered in different contexts (unprintable characters are replaced with their
name within angle brackets). Note that some characters that may only be
represented escaped have no possible representation inside single quotes,
hence the '-' there:
CharacterUnquotedWeakly quotedStrongly quoted

2.3. Environment variables

HAProxy's configuration supports environment variables. Those variables are
interpreted only within double quotes. Variables are expanded during the
configuration parsing. Variable names must be preceded by a dollar ("$") and
optionally enclosed with braces ("{}") similarly to what is done in Bourne
shell. Variable names can contain alphanumerical characters or the character
underscore ("_") but should not start with a digit. If the variable contains a
list of several values separated by spaces, it can be expanded as individual
arguments by enclosing the variable with braces and appending the suffix '[*]'
before the closing brace.
Example:
bind "fd@${FD_APP1}"

log "${LOCAL_SYSLOG}:514" local0 notice   # send to local server

user "$HAPROXY_USER"
Some variables are defined by HAProxy, they can be used in the configuration
file, or could be inherited by a program (See 3.7. Programs):

* HAPROXY_LOCALPEER: defined at the startup of the process which contains the
  name of the local peer. (See "-L" in the management guide.)

* HAPROXY_CFGFILES: list of the configuration files loaded by HAProxy,
  separated by semicolons. Can be useful in the case you specified a
  directory.

* HAPROXY_MWORKER: In master-worker mode, this variable is set to 1.

* HAPROXY_CLI: configured listeners addresses of the stats socket for every
  processes, separated by semicolons.

* HAPROXY_MASTER_CLI: In master-worker mode, listeners addresses of the master
  CLI, separated by semicolons.

* HAPROXY_STARTUP_VERSION: contains the version used to start, in master-worker
  mode this is the version which was used to start the master, even after
  updating the binary and reloading.

In addition, some pseudo-variables are internally resolved and may be used as
regular variables. Pseudo-variables always start with a dot ('.'), and are the
only ones where the dot is permitted. The current list of pseudo-variables is:

* .FILE: the name of the configuration file currently being parsed.

* .LINE: the line number of the configuration file currently being parsed,
  starting at one.

* .SECTION: the name of the section currently being parsed, or its type if the
  section doesn't have a name (e.g. "global"), or an empty string before the
  first section.

These variables are resolved at the location where they are parsed. For example
if a ".LINE" variable is used in a "log-format" directive located in a defaults
section, its line number will be resolved before parsing and compiling the
"log-format" directive, so this same line number will be reused by subsequent
proxies.

This way it is possible to emit information to help locate a rule in variables,
logs, error statuses, health checks, header values, or even to use line numbers
to name some config objects like servers for example.

See also "external-check command" for other variables.

2.4. Conditional blocks

It may sometimes be convenient to be able to conditionally enable or disable
some arbitrary parts of the configuration, for example to enable/disable SSL or
ciphers, enable or disable some pre-production listeners without modifying the
configuration, or adjust the configuration's syntax to support two distinct
versions of HAProxy during a migration.. HAProxy brings a set of nestable
preprocessor-like directives which allow to integrate or ignore some blocks of
text. These directives must be placed on their own line and they act on the
lines that follow them. Two of them support an expression, the other ones only
switch to an alternate block or end a current level. The 4 following directives
are defined to form conditional blocks:

  - .if <condition>
  - .elif <condition>
  - .else
  - .endif

The ".if" directive nests a new level, ".elif" stays at the same level, ".else"
as well, and ".endif" closes a level. Each ".if" must be terminated by a
matching ".endif". The ".elif" may only be placed after ".if" or ".elif", and
there is no limit to the number of ".elif" that may be chained. There may be
only one ".else" per ".if" and it must always be after the ".if" or the last
".elif" of a block.

Comments may be placed on the same line if needed after a '#', they will be
ignored. The directives are tokenized like other configuration directives, and
as such it is possible to use environment variables in conditions.

The conditions are currently limited to:

  - an empty string, always returns "false"
  - the integer zero ('0'), always returns "false"
  - a non-nul integer (e.g. '1'), always returns "true".
  - a predicate optionally followed by argument(s) in parenthesis.

The list of currently supported predicates is the following:

  - defined(<name>)       : returns true if an environment variable <name>
                            exists, regardless of its contents

  - feature(<name>)       : returns true if feature <name> is listed as present
                            in the features list reported by "haproxy -vv"
                            (which means a <name> appears after a '+')

  - streq(<str1>,<str2>)  : returns true only if the two strings are equal
  - strneq(<str1>,<str2>) : returns true only if the two strings differ

  - version_atleast(<ver>): returns true if the current haproxy version is
                            at least as recent as <ver> otherwise false. The
                            version syntax is the same as shown by "haproxy -v"
                            and missing components are assumed as being zero.

  - version_before(<ver>) : returns true if the current haproxy version is
                            strictly older than <ver> otherwise false. The
                            version syntax is the same as shown by "haproxy -v"
                            and missing components are assumed as being zero.
Example:
.if defined(HAPROXY_MWORKER)
    listen mwcli_px
       bind :1111
       ...
.endif

.if strneq("$SSL_ONLY",yes)
       bind :80
.endif

.if streq("$WITH_SSL",yes)
  .if feature(OPENSSL)
       bind :443 ssl crt ...
  .endif
.endif

.if version_atleast(2.4-dev19)
    profiling.memory on
.endif
Four other directives are provided to report some status:

  - .diag "message"    : emit this message only when in diagnostic mode (-dD)
  - .notice "message"  : emit this message at level NOTICE
  - .warning "message" : emit this message at level WARNING
  - .alert "message"   : emit this message at level ALERT

Messages emitted at level WARNING may cause the process to fail to start if the
"strict-mode" is enabled. Messages emitted at level ALERT will always cause a
fatal error. These can be used to detect some inappropriate conditions and
provide advice to the user.
Example:
.if "${A}"
  .if "${B}"
     .notice "A=1, B=1"
  .elif "${C}"
     .notice "A=1, B=0, C=1"
  .elif "${D}"
     .warning "A=1, B=0, C=0, D=1"
  .else
     .alert "A=1, B=0, C=0, D=0"
  .endif
.else
     .notice "A=0"
.endif

.diag "WTA/2021-05-07: replace 'redirect' with 'return' after switch to 2.4"
      http-request redirect location /goaway if ABUSE

2.5. Time format

Some parameters involve values representing time, such as timeouts. These
values are generally expressed in milliseconds (unless explicitly stated
otherwise) but may be expressed in any other unit by suffixing the unit to the
numeric value. It is important to consider this because it will not be repeated
for every keyword. Supported units are :

  - us : microseconds. 1 microsecond = 1/1000000 second
  - ms : milliseconds. 1 millisecond = 1/1000 second. This is the default.
  - s  : seconds. 1s = 1000ms
  - m  : minutes. 1m = 60s = 60000ms
  - h  : hours.   1h = 60m = 3600s = 3600000ms
  - d  : days.    1d = 24h = 1440m = 86400s = 86400000ms

2.6. Size format

Some parameters involve values representing size, such as bandwidth limits.
These values are generally expressed in bytes (unless explicitly stated
otherwise) but may be expressed in any other unit by suffixing the unit to the
numeric value. It is important to consider this because it will not be repeated
for every keyword. Supported units are case insensitive :

  - k : kilobytes. 1 kilobyte = 1024 bytes
  - m : megabytes. 1 megabyte = 1048576 bytes
  - g : gigabytes. 1 gigabyte = 1073741824 bytes

Both time and size formats require integers, decimal notation is not allowed.

2.7. Examples

    # Simple configuration for an HTTP proxy listening on port 80 on all
    # interfaces and forwarding requests to a single backend "servers" with a
    # single server "server1" listening on 127.0.0.1:8000
    global
        daemon
        maxconn 256

    defaults
        mode http
        timeout connect 5000ms
        timeout client 50000ms
        timeout server 50000ms

    frontend http-in
        bind *:80
        default_backend servers

    backend servers
        server server1 127.0.0.1:8000 maxconn 32


    # The same configuration defined with a single listen block. Shorter but
    # less expressive, especially in HTTP mode.
    global
        daemon
        maxconn 256

    defaults
        mode http
        timeout connect 5000ms
        timeout client 50000ms
        timeout server 50000ms

    listen http-in
        bind *:80
        server server1 127.0.0.1:8000 maxconn 32


Assuming haproxy is in $PATH, test these configurations in a shell with:

    $ sudo haproxy -f configuration.conf -c
Parameters in the "global" section are process-wide and often OS-specific. They
are generally set once for all and do not need being changed once correct. Some
of them have command-line equivalents.

The following keywords are supported in the "global" section :

 * Process management and security
   - 51degrees-cache-size
   - 51degrees-data-file
   - 51degrees-property-name-list
   - 51degrees-property-separator
   - ca-base
   - chroot
   - cpu-map
   - crt-base
   - daemon
   - default-path
   - description
   - deviceatlas-json-file
   - deviceatlas-log-level
   - deviceatlas-properties-cookie
   - deviceatlas-separator
   - expose-experimental-directives
   - external-check
   - gid
   - group
   - h1-case-adjust
   - h1-case-adjust-file
   - h2-workaround-bogus-websocket-clients
   - hard-stop-after
   - insecure-fork-wanted
   - insecure-setuid-wanted
   - issuers-chain-path
   - localpeer
   - log
   - log-send-hostname
   - log-tag
   - lua-load
   - lua-load-per-thread
   - lua-prepend-path
   - mworker-max-reloads
   - nbproc
   - nbthread
   - node
   - numa-cpu-mapping
   - pidfile
   - pp2-never-send-local
   - presetenv
   - resetenv
   - set-dumpable
   - set-var
   - setenv
   - ssl-default-bind-ciphers
   - ssl-default-bind-ciphersuites
   - ssl-default-bind-curves
   - ssl-default-bind-options
   - ssl-default-server-ciphers
   - ssl-default-server-ciphersuites
   - ssl-default-server-options
   - ssl-dh-param-file
   - ssl-server-verify
   - ssl-skip-self-issued-ca
   - stats
   - strict-limits
   - uid
   - ulimit-n
   - unix-bind
   - unsetenv
   - user
   - wurfl-cache-size
   - wurfl-data-file
   - wurfl-information-list
   - wurfl-information-list-separator

 * Performance tuning
   - busy-polling
   - max-spread-checks
   - maxcompcpuusage
   - maxcomprate
   - maxconn
   - maxconnrate
   - maxpipes
   - maxsessrate
   - maxsslconn
   - maxsslrate
   - maxzlibmem
   - no-memory-trimming
   - noepoll
   - noevports
   - nogetaddrinfo
   - nokqueue
   - nopoll
   - noreuseport
   - nosplice
   - profiling.tasks
   - server-state-base
   - server-state-file
   - spread-checks
   - ssl-engine
   - ssl-mode-async
   - tune.buffers.limit
   - tune.buffers.reserve
   - tune.bufsize
   - tune.chksize
   - tune.comp.maxlevel
   - tune.fail-alloc
   - tune.fd.edge-triggered
   - tune.h2.header-table-size
   - tune.h2.initial-window-size
   - tune.h2.max-concurrent-streams
   - tune.h2.max-frame-size
   - tune.http.cookielen
   - tune.http.logurilen
   - tune.http.maxhdr
   - tune.idle-pool.shared
   - tune.idletimer
   - tune.lua.forced-yield
   - tune.lua.maxmem
   - tune.lua.service-timeout
   - tune.lua.session-timeout
   - tune.lua.task-timeout
   - tune.maxaccept
   - tune.maxpollevents
   - tune.maxrewrite
   - tune.pattern.cache-size
   - tune.pipesize
   - tune.pool-high-fd-ratio
   - tune.pool-low-fd-ratio
   - tune.rcvbuf.client
   - tune.rcvbuf.server
   - tune.recv_enough
   - tune.runqueue-depth
   - tune.sched.low-latency
   - tune.sndbuf.client
   - tune.sndbuf.server
   - tune.ssl.cachesize
   - tune.ssl.capture-cipherlist-size
   - tune.ssl.default-dh-param
   - tune.ssl.force-private-cache
   - tune.ssl.keylog
   - tune.ssl.lifetime
   - tune.ssl.maxrecord
   - tune.ssl.ssl-ctx-cache-size
   - tune.vars.global-max-size
   - tune.vars.proc-max-size
   - tune.vars.reqres-max-size
   - tune.vars.sess-max-size
   - tune.vars.txn-max-size
   - tune.zlib.memlevel
   - tune.zlib.windowsize

 * Debugging
   - quiet
   - zero-warning

3.1. Process management and security

The path of the 51Degrees data file to provide device detection services. The
file should be unzipped and accessible by HAProxy with relevant permissions.

Please note that this option is only available when HAProxy has been
compiled with USE_51DEGREES.
A list of 51Degrees property names to be load from the dataset. A full list
of names is available on the 51Degrees website:
https://51degrees.com/resources/property-dictionary

Please note that this option is only available when HAProxy has been
compiled with USE_51DEGREES.
A char that will be appended to every property value in a response header
containing 51Degrees results. If not set that will be set as ','.

Please note that this option is only available when HAProxy has been
compiled with USE_51DEGREES.
Sets the size of the 51Degrees converter cache to <number> entries. This
is an LRU cache which reminds previous device detections and their results.
By default, this cache is disabled.

Please note that this option is only available when HAProxy has been
compiled with USE_51DEGREES.
ca-base <dir>
Assigns a default directory to fetch SSL CA certificates and CRLs from when a
relative path is used with "ca-file", "ca-verify-file" or "crl-file"
directives. Absolute locations specified in "ca-file", "ca-verify-file" and
"crl-file" prevail and ignore "ca-base".
chroot <jail dir>
Changes current directory to <jail dir> and performs a chroot() there before
dropping privileges. This increases the security level in case an unknown
vulnerability would be exploited, since it would make it very hard for the
attacker to exploit the system. This only works when the process is started
with superuser privileges. It is important to ensure that <jail_dir> is both
empty and non-writable to anyone.
cpu-map [auto:]<process-set>[/<thread-set>] <cpu-set>...
On Linux 2.6 and above, it is possible to bind a process or a thread to a
specific CPU set. This means that the process or the thread will never run on
other CPUs. The "cpu-map" directive specifies CPU sets for process or thread
sets. The first argument is a process set, eventually followed by a thread
set. These sets have the format

    all | odd | even | number[-[number]]

<number>> must be a number between 1 and 32 or 64, depending on the machine's
word size. Any process IDs above nbproc and any thread IDs above nbthread are
ignored. It is possible to specify a range with two such number delimited by
a dash ('-'). It also is possible to specify all processes at once using
"all", only odd numbers using "odd" or even numbers using "even", just like
with the "bind-process" directive. The second and forthcoming arguments are
CPU sets. Each CPU set is either a unique number starting at 0 for the first
CPU or a range with two such numbers delimited by a dash ('-'). Outside of
Linux and BSDs, there may be a limitation on the maximum CPU index to either
31 or 63. Multiple CPU numbers or ranges may be specified, and the processes
or threads will be allowed to bind to all of them. Obviously, multiple
"cpu-map" directives may be specified. Each "cpu-map" directive will replace
the previous ones when they overlap. A thread will be bound on the
intersection of its mapping and the one of the process on which it is
attached. If the intersection is null, no specific binding will be set for
the thread.

Ranges can be partially defined. The higher bound can be omitted. In such
case, it is replaced by the corresponding maximum value, 32 or 64 depending
on the machine's word size.

The prefix "auto:" can be added before the process set to let HAProxy
automatically bind a process or a thread to a CPU by incrementing
process/thread and CPU sets. To be valid, both sets must have the same
size. No matter the declaration order of the CPU sets, it will be bound from
the lowest to the highest bound. Having a process and a thread range with the
"auto:" prefix is not supported. Only one range is supported, the other one
must be a fixed number.
Examples:
cpu-map 1-4 0-3   # bind processes 1 to 4 on the first 4 CPUs

cpu-map 1/all 0-3 # bind all threads of the first process on the
                  # first 4 CPUs

cpu-map 1- 0-     # will be replaced by "cpu-map 1-64 0-63"
                  # or "cpu-map 1-32 0-31" depending on the machine's
                  # word size.

# all these lines bind the process 1 to the cpu 0, the process 2 to cpu 1
# and so on.
cpu-map auto:1-4   0-3
cpu-map auto:1-4   0-1 2-3
cpu-map auto:1-4   3 2 1 0

# all these lines bind the thread 1 to the cpu 0, the thread 2 to cpu 1
# and so on.
cpu-map auto:1/1-4   0-3
cpu-map auto:1/1-4   0-1 2-3
cpu-map auto:1/1-4   3 2 1 0

# bind each process to exactly one CPU using all/odd/even keyword
cpu-map auto:all   0-63
cpu-map auto:even  0-31
cpu-map auto:odd   32-63

# invalid cpu-map because process and CPU sets have different sizes.
cpu-map auto:1-4   0    # invalid
cpu-map auto:1     0-3  # invalid

# invalid cpu-map because automatic binding is used with a process range
# and a thread range.
cpu-map auto:all/all   0 # invalid
cpu-map auto:all/1-4   0 # invalid
cpu-map auto:1-4/all   0 # invalid
crt-base <dir>
Assigns a default directory to fetch SSL certificates from when a relative
path is used with "crtfile" or "crt" directives. Absolute locations specified
prevail and ignore "crt-base".
Makes the process fork into background. This is the recommended mode of
operation. It is equivalent to the command line "-D" argument. It can be
disabled by the command line "-db" argument. This option is ignored in
systemd mode.
default-path { current | config | parent | origin <path> }
By default HAProxy loads all files designated by a relative path from the
location the process is started in. In some circumstances it might be
desirable to force all relative paths to start from a different location
just as if the process was started from such locations. This is what this
directive is made for. Technically it will perform a temporary chdir() to
the designated location while processing each configuration file, and will
return to the original directory after processing each file. It takes an
argument indicating the policy to use when loading files whose path does
not start with a slash ('/'):
  - "current" indicates that all relative files are to be loaded from the
    directory the process is started in ; this is the default.

  - "config" indicates that all relative files should be loaded from the
    directory containing the configuration file. More specifically, if the
    configuration file contains a slash ('/'), the longest part up to the
    last slash is used as the directory to change to, otherwise the current
    directory is used. This mode is convenient to bundle maps, errorfiles,
    certificates and Lua scripts together as relocatable packages. When
    multiple configuration files are loaded, the directory is updated for
    each of them.

  - "parent" indicates that all relative files should be loaded from the
    parent of the directory containing the configuration file. More
    specifically, if the configuration file contains a slash ('/'), ".."
    is appended to the longest part up to the last slash is used as the
    directory to change to, otherwise the directory is "..". This mode is
    convenient to bundle maps, errorfiles,  certificates and Lua scripts
    together as relocatable packages, but where each part is located in a
    different subdirectory (e.g. "config/", "certs/", "maps/", ...).

  - "origin" indicates that all relative files should be loaded from the
    designated (mandatory) path. This may be used to ease management of
    different HAProxy instances running in parallel on a system, where each
    instance uses a different prefix but where the rest of the sections are
    made easily relocatable.

Each "default-path" directive instantly replaces any previous one and will
possibly result in switching to a different directory. While this should
always result in the desired behavior, it is really not a good practice to
use multiple default-path directives, and if used, the policy ought to remain
consistent across all configuration files.

Warning: some configuration elements such as maps or certificates are
uniquely identified by their configured path. By using a relocatable layout,
it becomes possible for several of them to end up with the same unique name,
making it difficult to update them at run time, especially when multiple
configuration files are loaded from different directories. It is essential to
observe a strict collision-free file naming scheme before adopting relative
paths. A robust approach could consist in prefixing all files names with
their respective site name, or in doing so at the directory level.
Add a text that describes the instance.

Please note that it is required to escape certain characters (# for example)
and this text is inserted into a html page so you should avoid using
"<" and ">" characters.
Sets the path of the DeviceAtlas JSON data file to be loaded by the API.
The path must be a valid JSON data file and accessible by HAProxy process.
Sets the level of information returned by the API. This directive is
optional and set to 0 by default if not set.
Sets the client cookie's name used for the detection if the DeviceAtlas
Client-side component was used during the request. This directive is optional
and set to DAPROPS by default if not set.
Sets the character separator for the API properties results. This directive
is optional and set to | by default if not set.
This statement must appear before using directives tagged as experimental or
the config file will be rejected.
Allows the use of an external agent to perform health checks. This is
disabled by default as a security precaution, and even when enabled, checks
may still fail unless "insecure-fork-wanted" is enabled as well. If the
program launched makes use of a setuid executable (it should really not),
you may also need to set "insecure-setuid-wanted" in the global section.
See "option external-check", and "insecure-fork-wanted", and
"insecure-setuid-wanted".
gid <number>
Changes the process's group ID to <number>. It is recommended that the group
ID is dedicated to HAProxy or to a small set of similar daemons. HAProxy must
be started with a user belonging to this group, or with superuser privileges.
Note that if HAProxy is started from a user having supplementary groups, it
will only be able to drop these groups if started with superuser privileges.
See also "group" and "uid".
group <group name>
Similar to "gid" but uses the GID of group name <group name> from /etc/group.
See also "gid" and "user".
h1-case-adjust <from> <to>
Defines the case adjustment to apply, when enabled, to the header name
<from>, to change it to <to> before sending it to HTTP/1 clients or
servers. <from> must be in lower case, and <from> and <to> must not differ
except for their case. It may be repeated if several header names need to be
adjusted. Duplicate entries are not allowed. If a lot of header names have to
be adjusted, it might be more convenient to use "h1-case-adjust-file".
Please note that no transformation will be applied unless "option
h1-case-adjust-bogus-client" or "option h1-case-adjust-bogus-server" is
specified in a proxy.

There is no standard case for header names because, as stated in RFC7230,
they are case-insensitive. So applications must handle them in a case-
insensitive manner. But some bogus applications violate the standards and
erroneously rely on the cases most commonly used by browsers. This problem
becomes critical with HTTP/2 because all header names must be exchanged in
lower case, and HAProxy follows the same convention. All header names are
sent in lower case to clients and servers, regardless of the HTTP version.

Applications which fail to properly process requests or responses may require
to temporarily use such workarounds to adjust header names sent to them for
the time it takes the application to be fixed. Please note that an
application which requires such workarounds might be vulnerable to content
smuggling attacks and must absolutely be fixed.
Example:
global
  h1-case-adjust content-length Content-Length
See "h1-case-adjust-file", "option h1-case-adjust-bogus-client" and
"option h1-case-adjust-bogus-server".
Defines a file containing a list of key/value pairs used to adjust the case
of some header names before sending them to HTTP/1 clients or servers. The
file <hdrs-file> must contain 2 header names per line. The first one must be
in lower case and both must not differ except for their case. Lines which
start with '#' are ignored, just like empty lines. Leading and trailing tabs
and spaces are stripped. Duplicate entries are not allowed. Please note that
no transformation will be applied unless "option h1-case-adjust-bogus-client"
or "option h1-case-adjust-bogus-server" is specified in a proxy.

If this directive is repeated, only the last one will be processed.  It is an
alternative to the directive "h1-case-adjust" if a lot of header names need
to be adjusted. Please read the risks associated with using this.

See "h1-case-adjust", "option h1-case-adjust-bogus-client" and
"option h1-case-adjust-bogus-server".
This disables the announcement of the support for h2 websockets to clients.
This can be use to overcome clients which have issues when implementing the
relatively fresh RFC8441, such as Firefox 88. To allow clients to
automatically downgrade to http/1.1 for the websocket tunnel, specify h2
support on the bind line using "alpn" without an explicit "proto" keyword. If
this statement was previously activated, this can be disabled by prefixing
the keyword with "no'.
Defines the maximum time allowed to perform a clean soft-stop.
Arguments :
<time>  is the maximum time (by default in milliseconds) for which the
        instance will remain alive when a soft-stop is received via the
        SIGUSR1 signal.
This may be used to ensure that the instance will quit even if connections
remain opened during a soft-stop (for example with long timeouts for a proxy
in tcp mode). It applies both in TCP and HTTP mode.
Example:
global
  hard-stop-after 30s
By default HAProxy tries hard to prevent any thread and process creation
after it starts. Doing so is particularly important when using Lua files of
uncertain origin, and when experimenting with development versions which may
still contain bugs whose exploitability is uncertain. And generally speaking
it's good hygiene to make sure that no unexpected background activity can be
triggered by traffic. But this prevents external checks from working, and may
break some very specific Lua scripts which actively rely on the ability to
fork. This option is there to disable this protection. Note that it is a bad
idea to disable it, as a vulnerability in a library or within HAProxy itself
will be easier to exploit once disabled. In addition, forking from Lua or
anywhere else is not reliable as the forked process may randomly embed a lock
set by another thread and never manage to finish an operation. As such it is
highly recommended that this option is never used and that any workload
requiring such a fork be reconsidered and moved to a safer solution (such as
agents instead of external checks). This option supports the "no" prefix to
disable it.
HAProxy doesn't need to call executables at run time (except when using
external checks which are strongly recommended against), and is even expected
to isolate itself into an empty chroot. As such, there basically is no valid
reason to allow a setuid executable to be called without the user being fully
aware of the risks. In a situation where HAProxy would need to call external
checks and/or disable chroot, exploiting a vulnerability in a library or in
HAProxy itself could lead to the execution of an external program. On Linux
it is possible to lock the process so that any setuid bit present on such an
executable is ignored. This significantly reduces the risk of privilege
escalation in such a situation. This is what HAProxy does by default. In case
this causes a problem to an external check (for example one which would need
the "ping" command), then it is possible to disable this protection by
explicitly adding this directive in the global section. If enabled, it is
possible to turn it back off by prefixing it with the "no" keyword.
Assigns a directory to load certificate chain for issuer completion. All
files must be in PEM format. For certificates loaded with "crt" or "crt-list",
if certificate chain is not included in PEM (also commonly known as
intermediate certificate), HAProxy will complete chain if the issuer of the
certificate corresponds to the first certificate of the chain loaded with
"issuers-chain-path".
A "crt" file with PrivateKey+Certificate+IntermediateCA2+IntermediateCA1
could be replaced with PrivateKey+Certificate. HAProxy will complete the
chain if a file with IntermediateCA2+IntermediateCA1 is present in
"issuers-chain-path" directory. All other certificates with the same issuer
will share the chain in memory.

The OCSP features are not able to use the completed chain from
'issuers-chain-path', please use an additionnal .issuer file if you want to
achieve OCSP stapling.
localpeer <name>
Sets the local instance's peer name. It will be ignored if the "-L"
command line argument is specified or if used after "peers" section
definitions. In such cases, a warning message will be emitted during
the configuration parsing.

This option will also set the HAPROXY_LOCALPEER environment variable.
See also "-L" in the management guide and "peers" section below.
log <address> [len <length>] [format <format>] [sample <ranges>:<sample_size>] <facility> [max level [min level]]
Adds a global syslog server. Several global servers can be defined. They
will receive logs for starts and exits, as well as all logs from proxies
configured with "log global".

<address> can be one of:

      - An IPv4 address optionally followed by a colon and a UDP port. If
        no port is specified, 514 is used by default (the standard syslog
        port).

      - An IPv6 address followed by a colon and optionally a UDP port. If
        no port is specified, 514 is used by default (the standard syslog
        port).

      - A filesystem path to a datagram UNIX domain socket, keeping in mind
        considerations for chroot (be sure the path is accessible inside
        the chroot) and uid/gid (be sure the path is appropriately
        writable).

      - A file descriptor number in the form "fd@<number>", which may point
        to a pipe, terminal, or socket. In this case unbuffered logs are used
        and one writev() call per log is performed. This is a bit expensive
        but acceptable for most workloads. Messages sent this way will not be
        truncated but may be dropped, in which case the DroppedLogs counter
        will be incremented. The writev() call is atomic even on pipes for
        messages up to PIPE_BUF size, which POSIX recommends to be at least
        512 and which is 4096 bytes on most modern operating systems. Any
        larger message may be interleaved with messages from other processes.
        Exceptionally for debugging purposes the file descriptor may also be
        directed to a file, but doing so will significantly slow HAProxy down
        as non-blocking calls will be ignored. Also there will be no way to
        purge nor rotate this file without restarting the process. Note that
        the configured syslog format is preserved, so the output is suitable
        for use with a TCP syslog server. See also the "short" and "raw"
        format below.

      - "stdout" / "stderr", which are respectively aliases for "fd@1" and
        "fd@2", see above.

      - A ring buffer in the form "ring@<name>", which will correspond to an
        in-memory ring buffer accessible over the CLI using the "show events"
        command, which will also list existing rings and their sizes. Such
        buffers are lost on reload or restart but when used as a complement
        this can help troubleshooting by having the logs instantly available.

      You may want to reference some environment variables in the address
      parameter, see section 2.3 about environment variables.

<length> is an optional maximum line length. Log lines larger than this value
         will be truncated before being sent. The reason is that syslog
         servers act differently on log line length. All servers support the
         default value of 1024, but some servers simply drop larger lines
         while others do log them. If a server supports long lines, it may
         make sense to set this value here in order to avoid truncating long
         lines. Similarly, if a server drops long lines, it is preferable to
         truncate them before sending them. Accepted values are 80 to 65535
         inclusive. The default value of 1024 is generally fine for all
         standard usages. Some specific cases of long captures or
         JSON-formatted logs may require larger values. You may also need to
         increase "tune.http.logurilen" if your request URIs are truncated.

<format> is the log format used when generating syslog messages. It may be
         one of the following :

  local     Analog to rfc3164 syslog message format except that hostname
            field is stripped. This is the default.
            Note: option "log-send-hostname" switches the default to
            rfc3164.

  rfc3164   The RFC3164 syslog message format.
            (https://tools.ietf.org/html/rfc3164)

  rfc5424   The RFC5424 syslog message format.
            (https://tools.ietf.org/html/rfc5424)

  priority  A message containing only a level plus syslog facility between
            angle brackets such as '<63>', followed by the text. The PID,
            date, time, process name and system name are omitted. This is
            designed to be used with a local log server.

  short     A message containing only a level between angle brackets such as
            '<3>', followed by the text. The PID, date, time, process name
            and system name are omitted. This is designed to be used with a
            local log server. This format is compatible with what the systemd
            logger consumes.

  timed     A message containing only a level between angle brackets such as
           '<3>', followed by ISO date and by the text. The PID, process
            name and system name are omitted. This is designed to be
            used with a local log server.

  iso       A message containing only the ISO date, followed by the text.
            The PID, process name and system name are omitted. This is
            designed to be used with a local log server.

  raw       A message containing only the text. The level, PID, date, time,
            process name and system name are omitted. This is designed to be
            used in containers or during development, where the severity only
            depends on the file descriptor used (stdout/stderr).

<ranges>   A list of comma-separated ranges to identify the logs to sample.
           This is used to balance the load of the logs to send to the log
           server. The limits of the ranges cannot be null. They are numbered
           from 1. The size or period (in number of logs) of the sample must be
           set with <sample_size> parameter.

<sample_size>
           The size of the sample in number of logs to consider when balancing
           their logging loads. It is used to balance the load of the logs to
           send to the syslog server. This size must be greater or equal to the
           maximum of the high limits of the ranges.
           (see also <ranges> parameter).

<facility> must be one of the 24 standard syslog facilities :

               kern   user   mail   daemon auth   syslog lpr    news
               uucp   cron   auth2  ftp    ntp    audit  alert  cron2
               local0 local1 local2 local3 local4 local5 local6 local7

           Note that the facility is ignored for the "short" and "raw"
           formats, but still required as a positional field. It is
           recommended to use "daemon" in this case to make it clear that
           it's only supposed to be used locally.

An optional level can be specified to filter outgoing messages. By default,
all messages are sent. If a maximum level is specified, only messages with a
severity at least as important as this level will be sent. An optional minimum
level can be specified. If it is set, logs emitted with a more severe level
than this one will be capped to this level. This is used to avoid sending
"emerg" messages on all terminals on some default syslog configurations.
Eight levels are known :

        emerg  alert  crit   err    warning notice info  debug
Sets the hostname field in the syslog header. If optional "string" parameter
is set the header is set to the string contents, otherwise uses the hostname
of the system. Generally used if one is not relaying logs through an
intermediate syslog server or for simply customizing the hostname printed in
the logs.
log-tag <string>
Sets the tag field in the syslog header to this string. It defaults to the
program name as launched from the command line, which usually is "haproxy".
Sometimes it can be useful to differentiate between multiple processes
running on the same host. See also the per-proxy "log-tag" directive.
lua-load <file>
This global directive loads and executes a Lua file in the shared context
that is visible to all threads. Any variable set in such a context is visible
from any thread. This is the easiest and recommended way to load Lua programs
but it will not scale well if a lot of Lua calls are performed, as only one
thread may be running on the global state at a time. A program loaded this
way will always see 0 in the "core.thread" variable. This directive can be
used multiple times.
This global directive loads and executes a Lua file into each started thread.
Any global variable has a thread-local visibility so that each thread could
see a different value. As such it is strongly recommended not to use global
variables in programs loaded this way. An independent copy is loaded and
initialized for each thread, everything is done sequentially and in the
thread's numeric order from 1 to nbthread. If some operations need to be
performed only once, the program should check the "core.thread" variable to
figure what thread is being initialized. Programs loaded this way will run
concurrently on all threads and will be highly scalable. This is the
recommended way to load simple functions that register sample-fetches,
converters, actions or services once it is certain the program doesn't depend
on global variables. For the sake of simplicity, the directive is available
even if only one thread is used and even if threads are disabled (in which
case it will be equivalent to lua-load). This directive can be used multiple
times.
lua-prepend-path <string> [<type>]
Prepends the given string followed by a semicolon to Lua's package.<type>
variable.
<type> must either be "path" or "cpath". If <type> is not given it defaults
to "path".

Lua's paths are semicolon delimited lists of patterns that specify how the
`require` function attempts to find the source file of a library. Question
marks (?) within a pattern will be replaced by module name. The path is
evaluated left to right. This implies that paths that are prepended later
will be checked earlier.

As an example by specifying the following path:

  lua-prepend-path /usr/share/haproxy-lua/?/init.lua
  lua-prepend-path /usr/share/haproxy-lua/?.lua

When `require "example"` is being called Lua will first attempt to load the
/usr/share/haproxy-lua/example.lua script, if that does not exist the
/usr/share/haproxy-lua/example/init.lua will be attempted and the default
paths if that does not exist either.

See https://www.lua.org/pil/8.1.html for the details within the Lua
documentation.
master-worker [no-exit-on-failure]
Master-worker mode. It is equivalent to the command line "-W" argument.
This mode will launch a "master" which will monitor the "workers". Using
this mode, you can reload HAProxy directly by sending a SIGUSR2 signal to
the master. The master-worker mode is compatible either with the foreground
or daemon mode. It is recommended to use this mode with multiprocess and
systemd.
By default, if a worker exits with a bad return code, in the case of a
segfault for example, all workers will be killed, and the master will leave.
It is convenient to combine this behavior with Restart=on-failure in a
systemd unit file in order to relaunch the whole process. If you don't want
this behavior, you must use the keyword "no-exit-on-failure".

See also "-W" in the management guide.
In master-worker mode, this option limits the number of time a worker can
survive to a reload. If the worker did not leave after a reload, once its
number of reloads is greater than this number, the worker will receive a
SIGTERM. This option helps to keep under control the number of workers.
See also "show proc" in the Management Guide.
nbproc <number> (deprecated)
Creates <number> processes when going daemon. This requires the "daemon"
mode. By default, only one process is created, which is the recommended mode
of operation. For systems limited to small sets of file descriptors per
process, it may be needed to fork multiple daemons. When set to a value
larger than 1, threads are automatically disabled. USING MULTIPLE PROCESSES
IS HARDER TO DEBUG AND IS REALLY DISCOURAGED. This directive is deprecated
and scheduled for removal in 2.5. Please use "nbthread" instead. See also
"daemon" and "nbthread".
nbthread <number>
This setting is only available when support for threads was built in. It
makes HAProxy run on <number> threads. This is exclusive with "nbproc". While
"nbproc" historically used to be the only way to use multiple processors, it
also involved a number of shortcomings related to the lack of synchronization
between processes (health-checks, peers, stick-tables, stats, ...) which do
not affect threads. As such, any modern configuration is strongly encouraged
to migrate away from "nbproc" to "nbthread". "nbthread" also works when
HAProxy is started in foreground. On some platforms supporting CPU affinity,
when nbproc is not used, the default "nbthread" value is automatically set to
the number of CPUs the process is bound to upon startup. This means that the
thread count can easily be adjusted from the calling process using commands
like "taskset" or "cpuset". Otherwise, this value defaults to 1. The default
value is reported in the output of "haproxy -vv". See also "nbproc".
By default, if running on Linux, HAProxy inspects on startup the CPU topology
of the machine. If a multi-socket machine is detected, the affinity is
automatically calculated to run on the CPUs of a single node. This is done in
order to not suffer from the performance penalties caused by the inter-socket
bus latency. However, if the applied binding is non optimal on a particular
architecture, it can be disabled with the statement 'no numa-cpu-mapping'.
This automatic binding is also not applied if a nbthread statement is present
in the configuration, or the affinity of the process is already specified,
for example via the 'cpu-map' directive or the taskset utility.
pidfile <pidfile>
Writes PIDs of all daemons into file <pidfile> when daemon mode or writes PID
of master process into file <pidfile> when master-worker mode. This option is
equivalent to the "-p" command line argument. The file must be accessible to
the user starting the process. See also "daemon" and "master-worker".
A bug in the PROXY protocol v2 implementation was present in HAProxy up to
version 2.1, causing it to emit a PROXY command instead of a LOCAL command
for health checks. This is particularly minor but confuses some servers'
logs. Sadly, the bug was discovered very late and revealed that some servers
which possibly only tested their PROXY protocol implementation against
HAProxy fail to properly handle the LOCAL command, and permanently remain in
the "down" state when HAProxy checks them. When this happens, it is possible
to enable this global option to revert to the older (bogus) behavior for the
time it takes to contact the affected components' vendors and get them fixed.
This option is disabled by default and acts on all servers having the
"send-proxy-v2" statement.
presetenv <name> <value>
Sets environment variable <name> to value <value>. If the variable exists, it
is NOT overwritten. The changes immediately take effect so that the next line
in the configuration file sees the new value. See also "setenv", "resetenv",
and "unsetenv".
resetenv [<name> ...]
Removes all environment variables except the ones specified in argument. It
allows to use a clean controlled environment before setting new values with
setenv or unsetenv. Please note that some internal functions may make use of
some environment variables, such as time manipulation functions, but also
OpenSSL or even external checks. This must be used with extreme care and only
after complete validation. The changes immediately take effect so that the
next line in the configuration file sees the new environment. See also
"setenv", "presetenv", and "unsetenv".
stats bind-process [ all | odd | even | <process_num>[-[process_num>]] ] ...
Limits the stats socket to a certain set of processes numbers. By default the
stats socket is bound to all processes, causing a warning to be emitted when
nbproc is greater than 1 because there is no way to select the target process
when connecting. However, by using this setting, it becomes possible to pin
the stats socket to a specific set of processes, typically the first one. The
warning will automatically be disabled when this setting is used, whatever
the number of processes used. The maximum process ID depends on the machine's
word size (32 or 64). Ranges can be partially defined. The higher bound can
be omitted. In such case, it is replaced by the corresponding maximum
value. A better option consists in using the "process" setting of the "stats
socket" line to force the process on each line.
server-state-base <directory>
Specifies the directory prefix to be prepended in front of all servers state
file names which do not start with a '/'. See also "server-state-file",
"load-server-state-from-file" and "server-state-file-name".
Specifies the path to the file containing state of servers. If the path starts
with a slash ('/'), it is considered absolute, otherwise it is considered
relative to the directory specified using "server-state-base" (if set) or to
the current directory. Before reloading HAProxy, it is possible to save the
servers' current state using the stats command "show servers state". The
output of this command must be written in the file pointed by <file>. When
starting up, before handling traffic, HAProxy will read, load and apply state
for each server found in the file and available in its current running
configuration. See also "server-state-base" and "show servers state",
"load-server-state-from-file" and "server-state-file-name"
This option is better left disabled by default and enabled only upon a
developer's request. If it has been enabled, it may still be forcibly
disabled by prefixing it with the "no" keyword. It has no impact on
performance nor stability but will try hard to re-enable core dumps that were
possibly disabled by file size limitations (ulimit -f), core size limitations
(ulimit -c), or "dumpability" of a process after changing its UID/GID (such
as /proc/sys/fs/suid_dumpable on Linux). Core dumps might still be limited by
the current directory's permissions (check what directory the file is started
from), the chroot directory's permission (it may be needed to temporarily
disable the chroot directive or to move it to a dedicated writable location),
or any other system-specific constraint. For example, some Linux flavours are
notorious for replacing the default core file with a path to an executable
not even installed on the system (check /proc/sys/kernel/core_pattern). Often,
simply writing "core", "core.%p" or "/var/log/core/core.%p" addresses the
issue. When trying to enable this option waiting for a rare issue to
re-appear, it's often a good idea to first try to obtain such a dump by
issuing, for example, "kill -11" to the "haproxy" process and verify that it
leaves a core where expected when dying.
set-var <var-name> <expr>
Sets the process-wide variable '<var-name>' to the result of the evaluation
of the sample expression <expr>. The variable '<var-name>' may only be a
process-wide variable (using the 'proc.' prefix). It works exactly like the
'set-var' action in TCP or HTTP rules except that the expression is evaluated
at configuration parsing time and that the variable is instantly set. The
sample fetch functions and converters permitted in the expression are only
those using internal data, typically 'int(value)' or 'str(value)'. It's is
possible to reference previously allocated variables as well. These variables
will then be readable (and modifiable) from the regular rule sets.
Example:
global
    set-var proc.current_state str(primary)
    set-var proc.prio int(100)
    set-var proc.threshold int(200),sub(proc.prio)
setenv <name> <value>
Sets environment variable <name> to value <value>. If the variable exists, it
is overwritten. The changes immediately take effect so that the next line in
the configuration file sees the new value. See also "presetenv", "resetenv",
and "unsetenv".
This setting is only available when support for OpenSSL was built in. It sets
the default string describing the list of cipher algorithms ("cipher suite")
that are negotiated during the SSL/TLS handshake up to TLSv1.2 for all
"bind" lines which do not explicitly define theirs. The format of the string
is defined in "man 1 ciphers" from OpenSSL man pages. For background
information and recommendations see e.g.
(https://wiki.mozilla.org/Security/Server_Side_TLS) and
(https://mozilla.github.io/server-side-tls/ssl-config-generator/). For TLSv1.3
cipher configuration, please check the "ssl-default-bind-ciphersuites" keyword.
Please check the "bind" keyword for more information.
This setting is only available when support for OpenSSL was built in and
OpenSSL 1.1.1 or later was used to build HAProxy. It sets the default string
describing the list of cipher algorithms ("cipher suite") that are negotiated
during the TLSv1.3 handshake for all "bind" lines which do not explicitly define
theirs. The format of the string is defined in
"man 1 ciphers" from OpenSSL man pages under the section "ciphersuites". For
cipher configuration for TLSv1.2 and earlier, please check the
"ssl-default-bind-ciphers" keyword. This setting might accept TLSv1.2
ciphersuites however this is an undocumented behavior and not recommended as
it could be inconsistent or buggy.
The default TLSv1.3 ciphersuites of OpenSSL are:
"TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256"

TLSv1.3 only supports 5 ciphersuites:

- TLS_AES_128_GCM_SHA256
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_CCM_SHA256
- TLS_AES_128_CCM_8_SHA256

Please check the "bind" keyword for more information.
Example:
global
    ssl-default-bind-ciphers ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-RSA-AES128-GCM-SHA256
    ssl-default-bind-ciphersuites TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256
This setting is only available when support for OpenSSL was built in. It sets
the default string describing the list of elliptic curves algorithms ("curve
suite") that are negotiated during the SSL/TLS handshake with ECDHE. The format
of the string is a colon-delimited list of curve name.
Please check the "bind" keyword for more information.
This setting is only available when support for OpenSSL was built in. It sets
default ssl-options to force on all "bind" lines. Please check the "bind"
keyword to see available options.
Example:
global
   ssl-default-bind-options ssl-min-ver TLSv1.0 no-tls-tickets
This setting is only available when support for OpenSSL was built in. It
sets the default string describing the list of cipher algorithms that are
negotiated during the SSL/TLS handshake up to TLSv1.2 with the server,
for all "server" lines which do not explicitly define theirs. The format of
the string is defined in "man 1 ciphers" from OpenSSL man pages. For background
information and recommendations see e.g.
(https://wiki.mozilla.org/Security/Server_Side_TLS) and
(https://mozilla.github.io/server-side-tls/ssl-config-generator/).
For TLSv1.3 cipher configuration, please check the
"ssl-default-server-ciphersuites" keyword. Please check the "server" keyword
for more information.
This setting is only available when support for OpenSSL was built in and
OpenSSL 1.1.1 or later was used to build HAProxy. It sets the default
string describing the list of cipher algorithms that are negotiated during
the TLSv1.3 handshake with the server, for all "server" lines which do not
explicitly define theirs. The format of the string is defined in
"man 1 ciphers" from OpenSSL man pages under the section "ciphersuites". For
cipher configuration for TLSv1.2 and earlier, please check the
"ssl-default-server-ciphers" keyword. Please check the "server" keyword for
more information.
This setting is only available when support for OpenSSL was built in. It sets
default ssl-options to force on all "server" lines. Please check the "server"
keyword to see available options.
This setting is only available when support for OpenSSL was built in. It sets
the default DH parameters that are used during the SSL/TLS handshake when
ephemeral Diffie-Hellman (DHE) key exchange is used, for all "bind" lines
which do not explicitly define theirs. It will be overridden by custom DH
parameters found in a bind certificate file if any. If custom DH parameters
are not specified either by using ssl-dh-param-file or by setting them
directly in the certificate file, pre-generated DH parameters of the size
specified by tune.ssl.default-dh-param will be used. Custom parameters are
known to be more secure and therefore their use is recommended.
Custom DH parameters may be generated by using the OpenSSL command
"openssl dhparam <size>", where size should be at least 2048, as 1024-bit DH
parameters should not be considered secure anymore.
This setting allows to configure the way HAProxy does the lookup for the
extra SSL files. By default HAProxy adds a new extension to the filename.
(ex: with "foobar.crt" load "foobar.crt.key"). With this option enabled,
HAProxy removes the extension before adding the new one (ex: with
"foobar.crt" load "foobar.key").

Your crt file must have a ".crt" extension for this option to work.

This option is not compatible with bundle extensions (.ecdsa, .rsa. .dsa)
and won't try to remove them.

This option is disabled by default. See also "ssl-load-extra-files".
ssl-load-extra-files <none|all|bundle|sctl|ocsp|issuer|key>*
This setting alters the way HAProxy will look for unspecified files during
the loading of the SSL certificates. This option applies to certificates
associated to "bind" lines as well as "server" lines but some of the extra
files will not have any functional impact for "server" line certificates.

By default, HAProxy discovers automatically a lot of files not specified in
the configuration, and you may want to disable this behavior if you want to
optimize the startup time.

"none": Only load the files specified in the configuration. Don't try to load
a certificate bundle if the file does not exist. In the case of a directory,
it won't try to bundle the certificates if they have the same basename.

"all": This is the default behavior, it will try to load everything,
bundles, sctl, ocsp, issuer, key.

"bundle": When a file specified in the configuration does not exist, HAProxy
will try to load a "cert bundle". Certificate bundles are only managed on the
frontend side and will not work for backend certificates.

Starting from HAProxy 2.3, the bundles are not loaded in the same OpenSSL
certificate store, instead it will loads each certificate in a separate
store which is equivalent to declaring multiple "crt". OpenSSL 1.1.1 is
required to achieve this. Which means that bundles are now used only for
backward compatibility and are not mandatory anymore to do an hybrid RSA/ECC
bind configuration.

To associate these PEM files into a "cert bundle" that is recognized by
HAProxy, they must be named in the following way: All PEM files that are to
be bundled must have the same base name, with a suffix indicating the key
type. Currently, three suffixes are supported: rsa, dsa and ecdsa. For
example, if www.example.com has two PEM files, an RSA file and an ECDSA
file, they must be named: "example.pem.rsa" and "example.pem.ecdsa". The
first part of the filename is arbitrary; only the suffix matters. To load
this bundle into HAProxy, specify the base name only:
Example :
bind :8443 ssl crt example.pem
Note that the suffix is not given to HAProxy; this tells HAProxy to look for
a cert bundle.

HAProxy will load all PEM files in the bundle as if they were configured
separately in several "crt".

The bundle loading does not have an impact anymore on the directory loading
since files are loading separately.

On the CLI, bundles are seen as separate files, and the bundle extension is
required to commit them.

OCSP files (.ocsp), issuer files (.issuer), Certificate Transparency (.sctl)
as well as private keys (.key) are supported with multi-cert bundling.

"sctl": Try to load "<basename>.sctl" for each crt keyword. If provided for
a backend certificate, it will be loaded but will not have any functional
impact.

"ocsp": Try to load "<basename>.ocsp" for each crt keyword. If provided for
a backend certificate, it will be loaded but will not have any functional
impact.

"issuer": Try to load "<basename>.issuer" if the issuer of the OCSP file is
not provided in the PEM file. If provided for a backend certificate, it will
be loaded but will not have any functional impact.

"key": If the private key was not provided by the PEM file, try to load a
file "<basename>.key" containing a private key.

The default behavior is "all".
Example:
ssl-load-extra-files bundle sctl
ssl-load-extra-files sctl ocsp issuer
ssl-load-extra-files none
ssl-server-verify [none|required]
The default behavior for SSL verify on servers side. If specified to 'none',
servers certificates are not verified. The default is 'required' except if
forced using cmdline option '-dV'.
Self issued CA, aka x509 root CA, is the anchor for chain validation: as a
server is useless to send it, client must have it. Standard configuration
need to not include such CA in PEM file. This option allows you to keep such
CA in PEM file without sending it to the client. Use case is to provide
issuer for ocsp without the need for '.issuer' file and be able to share it
with 'issuers-chain-path'. This concerns all certificates without intermediate
certificates. It's useless for BoringSSL, .issuer is ignored because ocsp
bits does not need it. Requires at least OpenSSL 1.0.2.
stats maxconn <connections>
By default, the stats socket is limited to 10 concurrent connections. It is
possible to change this value with "stats maxconn".
stats socket [<address:port>|<path>] [param*]
Binds a UNIX socket to <path> or a TCPv4/v6 address to <address:port>.
Connections to this socket will return various statistics outputs and even
allow some commands to be issued to change some runtime settings. Please
consult section 9.3 "Unix Socket commands" of Management Guide for more
details.

All parameters supported by "bind" lines are supported, for instance to
restrict access to some users or their access rights. Please consult
section 5.1 for more information.
stats timeout <timeout, in milliseconds>
The default timeout on the stats socket is set to 10 seconds. It is possible
to change this value with "stats timeout". The value must be passed in
milliseconds, or be suffixed by a time unit among { us, ms, s, m, h, d }.
Makes process fail at startup when a setrlimit fails. HAProxy tries to set the
best setrlimit according to what has been calculated. If it fails, it will
emit a warning. This option is here to guarantee an explicit failure of
HAProxy when those limits fail. It is enabled by default. It may still be
forcibly disabled by prefixing it with the "no" keyword.
uid <number>
Changes the process's user ID to <number>. It is recommended that the user ID
is dedicated to HAProxy or to a small set of similar daemons. HAProxy must
be started with superuser privileges in order to be able to switch to another
one. See also "gid" and "user".
ulimit-n <number>
Sets the maximum number of per-process file-descriptors to <number>. By
default, it is automatically computed, so it is recommended not to use this
option.
unix-bind [ prefix <prefix> ] [ mode <mode> ] [ user <user> ] [ uid <uid> ] [ group <group> ] [ gid <gid> ]
Fixes common settings to UNIX listening sockets declared in "bind" statements.
This is mainly used to simplify declaration of those UNIX sockets and reduce
the risk of errors, since those settings are most commonly required but are
also process-specific. The <prefix> setting can be used to force all socket
path to be relative to that directory. This might be needed to access another
component's chroot. Note that those paths are resolved before HAProxy chroots
itself, so they are absolute. The <mode>, <user>, <uid>, <group> and <gid>
all have the same meaning as their homonyms used by the "bind" statement. If
both are specified, the "bind" statement has priority, meaning that the
"unix-bind" settings may be seen as process-wide default settings.
unsetenv [<name> ...]
Removes environment variables specified in arguments. This can be useful to
hide some sensitive information that are occasionally inherited from the
user's environment during some operations. Variables which did not exist are
silently ignored so that after the operation, it is certain that none of
these variables remain. The changes immediately take effect so that the next
line in the configuration file will not see these variables. See also
"setenv", "presetenv", and "resetenv".
user <user name>
Similar to "uid" but uses the UID of user name <user name> from /etc/passwd.
See also "uid" and "group".
node <name>
Only letters, digits, hyphen and underscore are allowed, like in DNS names.

This statement is useful in HA configurations where two or more processes or
servers share the same IP address. By setting a different node-name on all
nodes, it becomes easy to immediately spot what server is handling the
traffic.
Sets the WURFL Useragent cache size. For faster lookups, already processed user
agents are kept in a LRU cache :
- "0"     : no cache is used.
- <size>  : size of lru cache in elements.

Please note that this option is only available when HAProxy has been compiled
with USE_WURFL=1.
wurfl-data-file <file path>
The path of the WURFL data file to provide device detection services. The
file should be accessible by HAProxy with relevant permissions.

Please note that this option is only available when HAProxy has been compiled
with USE_WURFL=1.
wurfl-information-list [<capability>]*
A space-delimited list of WURFL capabilities, virtual capabilities, property
names we plan to use in injected headers. A full list of capability and
virtual capability names is available on the Scientiamobile website :

    https://www.scientiamobile.com/wurflCapability

Valid WURFL properties are:
- wurfl_id                    Contains the device ID of the matched device.

- wurfl_root_id               Contains the device root ID of the matched
                              device.

- wurfl_isdevroot             Tells if the matched device is a root device.
                              Possible values are "TRUE" or "FALSE".

- wurfl_useragent             The original useragent coming with this
                              particular web request.

- wurfl_api_version           Contains a string representing the currently
                              used Libwurfl API version.

- wurfl_info                  A string containing information on the parsed
                              wurfl.xml and its full path.

- wurfl_last_load_time        Contains the UNIX timestamp of the last time
                              WURFL has been loaded successfully.

- wurfl_normalized_useragent  The normalized useragent.

Please note that this option is only available when HAProxy has been compiled
with USE_WURFL=1.
A char that will be used to separate values in a response header containing
WURFL results. If not set that a comma (',') will be used by default.

Please note that this option is only available when HAProxy has been compiled
with USE_WURFL=1.
wurfl-patch-file [<file path>]
A list of WURFL patch file paths. Note that patches are loaded during startup
thus before the chroot.

Please note that this option is only available when HAProxy has been compiled
with USE_WURFL=1.

3.2. Performance tuning

In some situations, especially when dealing with low latency on processors
supporting a variable frequency or when running inside virtual machines, each
time the process waits for an I/O using the poller, the processor goes back
to sleep or is offered to another VM for a long time, and it causes
excessively high latencies. This option provides a solution preventing the
processor from sleeping by always using a null timeout on the pollers. This
results in a significant latency reduction (30 to 100 microseconds observed)
at the expense of a risk to overheat the processor. It may even be used with
threads, in which case improperly bound threads may heavily conflict,
resulting in a worse performance and high values for the CPU stolen fields
in "show info" output, indicating which threads are misconfigured. It is
important not to let the process run on the same processor as the network
interrupts when this option is used. It is also better to avoid using it on
multiple CPU threads sharing the same core. This option is disabled by
default. If it has been enabled, it may still be forcibly disabled by
prefixing it with the "no" keyword. It is ignored by the "select" and
"poll" pollers.

This option is automatically disabled on old processes in the context of
seamless reload; it avoids too much cpu conflicts when multiple processes
stay around for some time waiting for the end of their current connections.
max-spread-checks <delay in milliseconds>
By default, HAProxy tries to spread the start of health checks across the
smallest health check interval of all the servers in a farm. The principle is
to avoid hammering services running on the same server. But when using large
check intervals (10 seconds or more), the last servers in the farm take some
time before starting to be tested, which can be a problem. This parameter is
used to enforce an upper bound on delay between the first and the last check,
even if the servers' check intervals are larger. When servers run with
shorter intervals, their intervals will be respected though.
Sets the maximum CPU usage HAProxy can reach before stopping the compression
for new requests or decreasing the compression level of current requests.
It works like 'maxcomprate' but measures CPU usage instead of incoming data
bandwidth. The value is expressed in percent of the CPU used by HAProxy. A
value of 100 disable the limit. The default value is 100. Setting a lower
value will prevent the compression work from slowing the whole process down
and from introducing high latencies.
maxcomprate <number>
Sets the maximum per-process input compression rate to <number> kilobytes
per second. For each session, if the maximum is reached, the compression
level will be decreased during the session. If the maximum is reached at the
beginning of a session, the session will not compress at all. If the maximum
is not reached, the compression level will be increased up to
tune.comp.maxlevel. A value of zero means there is no limit, this is the
default value.
maxconn <number>
Sets the maximum per-process number of concurrent connections to <number>. It
is equivalent to the command-line argument "-n". Proxies will stop accepting
connections when this limit is reached. The "ulimit-n" parameter is
automatically adjusted according to this value. See also "ulimit-n". Note:
the "select" poller cannot reliably use more than 1024 file descriptors on
some platforms. If your platform only supports select and reports "select
FAILED" on startup, you need to reduce maxconn until it works (slightly
below 500 in general). If this value is not set, it will automatically be
calculated based on the current file descriptors limit reported by the
"ulimit -n" command, possibly reduced to a lower value if a memory limit
is enforced, based on the buffer size, memory allocated to compression, SSL
cache size, and use or not of SSL and the associated maxsslconn (which can
also be automatic).
maxconnrate <number>
Sets the maximum per-process number of connections per second to <number>.
Proxies will stop accepting connections when this limit is reached. It can be
used to limit the global capacity regardless of each frontend capacity. It is
important to note that this can only be used as a service protection measure,
as there will not necessarily be a fair share between frontends when the
limit is reached, so it's a good idea to also limit each frontend to some
value close to its expected share. Also, lowering tune.maxaccept can improve
fairness.
maxpipes <number>
Sets the maximum per-process number of pipes to <number>. Currently, pipes
are only used by kernel-based tcp splicing. Since a pipe contains two file
descriptors, the "ulimit-n" value will be increased accordingly. The default
value is maxconn/4, which seems to be more than enough for most heavy usages.
The splice code dynamically allocates and releases pipes, and can fall back
to standard copy, so setting this value too low may only impact performance.
maxsessrate <number>
Sets the maximum per-process number of sessions per second to <number>.
Proxies will stop accepting connections when this limit is reached. It can be
used to limit the global capacity regardless of each frontend capacity. It is
important to note that this can only be used as a service protection measure,
as there will not necessarily be a fair share between frontends when the
limit is reached, so it's a good idea to also limit each frontend to some
value close to its expected share. Also, lowering tune.maxaccept can improve
fairness.
maxsslconn <number>
Sets the maximum per-process number of concurrent SSL connections to
<number>. By default there is no SSL-specific limit, which means that the
global maxconn setting will apply to all connections. Setting this limit
avoids having openssl use too much memory and crash when malloc returns NULL
(since it unfortunately does not reliably check for such conditions). Note
that the limit applies both to incoming and outgoing connections, so one
connection which is deciphered then ciphered accounts for 2 SSL connections.
If this value is not set, but a memory limit is enforced, this value will be
automatically computed based on the memory limit, maxconn,  the buffer size,
memory allocated to compression, SSL cache size, and use of SSL in either
frontends, backends or both. If neither maxconn nor maxsslconn are specified
when there is a memory limit, HAProxy will automatically adjust these values
so that 100% of the connections can be made over SSL with no risk, and will
consider the sides where it is enabled (frontend, backend, both).
maxsslrate <number>
Sets the maximum per-process number of SSL sessions per second to <number>.
SSL listeners will stop accepting connections when this limit is reached. It
can be used to limit the global SSL CPU usage regardless of each frontend
capacity. It is important to note that this can only be used as a service
protection measure, as there will not necessarily be a fair share between
frontends when the limit is reached, so it's a good idea to also limit each
frontend to some value close to its expected share. It is also important to
note that the sessions are accounted before they enter the SSL stack and not
after, which also protects the stack against bad handshakes. Also, lowering
tune.maxaccept can improve fairness.
maxzlibmem <number>
Sets the maximum amount of RAM in megabytes per process usable by the zlib.
When the maximum amount is reached, future sessions will not compress as long
as RAM is unavailable. When sets to 0, there is no limit.
The default value is 0. The value is available in bytes on the UNIX socket
with "show info" on the line "MaxZlibMemUsage", the memory used by zlib is
"ZlibMemUsage" in bytes.
Disables memory trimming ("malloc_trim") at a few moments where attempts are
made to reclaim lots of memory (on memory shortage or on reload). Trimming
memory forces the system's allocator to scan all unused areas and to release
them. This is generally seen as nice action to leave more available memory to
a new process while the old one is unlikely to make significant use of it.
But some systems dealing with tens to hundreds of thousands of concurrent
connections may experience a lot of memory fragmentation, that may render
this release operation extremely long. During this time, no more traffic
passes through the process, new connections are not accepted anymore, some
health checks may even fail, and the watchdog may even trigger and kill the
unresponsive process, leaving a huge core dump. If this ever happens, then it
is suggested to use this option to disable trimming and stop trying to be
nice with the new process. Note that advanced memory allocators usually do
not suffer from such a problem.
Disables the use of the "epoll" event polling system on Linux. It is
equivalent to the command-line argument "-de". The next polling system
used will generally be "poll". See also "nopoll".
Disables the use of the event ports event polling system on SunOS systems
derived from Solaris 10 and later. It is equivalent to the command-line
argument "-dv". The next polling system used will generally be "poll". See
also "nopoll".
Disables the use of getaddrinfo(3) for name resolving. It is equivalent to
the command line argument "-dG". Deprecated gethostbyname(3) will be used.
Disables the use of the "kqueue" event polling system on BSD. It is
equivalent to the command-line argument "-dk". The next polling system
used will generally be "poll". See also "nopoll".
Disables the use of the "poll" event polling system. It is equivalent to the
command-line argument "-dp". The next polling system used will be "select".
It should never be needed to disable "poll" since it's available on all
platforms supported by HAProxy. See also "nokqueue", "noepoll" and
"noevports".
Disables the use of SO_REUSEPORT - see socket(7). It is equivalent to the
command line argument "-dR".
Disables the use of kernel tcp splicing between sockets on Linux. It is
equivalent to the command line argument "-dS". Data will then be copied
using conventional and more portable recv/send calls. Kernel tcp splicing is
limited to some very recent instances of kernel 2.6. Most versions between
2.6.25 and 2.6.28 are buggy and will forward corrupted data, so they must not
be used. This option makes it easier to globally disable kernel splicing in
case of doubt. See also "option splice-auto", "option splice-request" and
"option splice-response".
profiling.memory { on | off }
Enables ('on') or disables ('off') per-function memory profiling. This will
keep usage statistics of malloc/calloc/realloc/free calls anywhere in the
process (including libraries) which will be reported on the CLI using the
"show profiling" command. This is essentially meant to be used when an
abnormal memory usage is observed that cannot be explained by the pools and
other info are required. The performance hit will typically be around 1%,
maybe a bit more on highly threaded machines, so it is normally suitable for
use in production. The same may be achieved at run time on the CLI using the
"set profiling memory" command, please consult the management manual.
profiling.tasks { auto | on | off }
Enables ('on') or disables ('off') per-task CPU profiling. When set to 'auto'
the profiling automatically turns on a thread when it starts to suffer from
an average latency of 1000 microseconds or higher as reported in the
"avg_loop_us" activity field, and automatically turns off when the latency
returns below 990 microseconds (this value is an average over the last 1024
loops so it does not vary quickly and tends to significantly smooth short
spikes). It may also spontaneously trigger from time to time on overloaded
systems, containers, or virtual machines, or when the system swaps (which
must absolutely never happen on a load balancer).

CPU profiling per task can be very convenient to report where the time is
spent and which requests have what effect on which other request. Enabling
it will typically affect the overall's performance by less than 1%, thus it
is recommended to leave it to the default 'auto' value so that it only
operates when a problem is identified. This feature requires a system
supporting the clock_gettime(2) syscall with clock identifiers
CLOCK_MONOTONIC and CLOCK_THREAD_CPUTIME_ID, otherwise the reported time will
be zero. This option may be changed at run time using "set profiling" on the
CLI.
spread-checks <0..50, in percent>
Sometimes it is desirable to avoid sending agent and health checks to
servers at exact intervals, for instance when many logical servers are
located on the same physical server. With the help of this parameter, it
becomes possible to add some randomness in the check interval between 0
and +/- 50%. A value between 2 and 5 seems to show good results. The
default value remains at 0.
ssl-engine <name> [algo <comma-separated list of algorithms>]
Sets the OpenSSL engine to <name>. List of valid values for <name> may be
obtained using the command "openssl engine". This statement may be used
multiple times, it will simply enable multiple crypto engines. Referencing an
unsupported engine will prevent HAProxy from starting. Note that many engines
will lead to lower HTTPS performance than pure software with recent
processors. The optional command "algo" sets the default algorithms an ENGINE
will supply using the OPENSSL function ENGINE_set_default_string(). A value
of "ALL" uses the engine for all cryptographic operations. If no list of
algo is specified then the value of "ALL" is used. A comma-separated list
of different algorithms may be specified, including: RSA, DSA, DH, EC, RAND,
CIPHERS, DIGESTS, PKEY, PKEY_CRYPTO, PKEY_ASN1. This is the same format that
openssl configuration file uses:
https://www.openssl.org/docs/man1.0.2/apps/config.html
Adds SSL_MODE_ASYNC mode to the SSL context. This enables asynchronous TLS
I/O operations if asynchronous capable SSL engines are used. The current
implementation supports a maximum of 32 engines. The Openssl ASYNC API
doesn't support moving read/write buffers and is not compliant with
HAProxy's buffer management. So the asynchronous mode is disabled on
read/write  operations (it is only enabled during initial and renegotiation
handshakes).
Sets a hard limit on the number of buffers which may be allocated per process.
The default value is zero which means unlimited. The minimum non-zero value
will always be greater than "tune.buffers.reserve" and should ideally always
be about twice as large. Forcing this value can be particularly useful to
limit the amount of memory a process may take, while retaining a sane
behavior. When this limit is reached, sessions which need a buffer wait for
another one to be released by another session. Since buffers are dynamically
allocated and released, the waiting time is very short and not perceptible
provided that limits remain reasonable. In fact sometimes reducing the limit
may even increase performance by increasing the CPU cache's efficiency. Tests
have shown good results on average HTTP traffic with a limit to 1/10 of the
expected global maxconn setting, which also significantly reduces memory
usage. The memory savings come from the fact that a number of connections
will not allocate 2*tune.bufsize. It is best not to touch this value unless
advised to do so by an HAProxy core developer.
Sets the number of buffers which are pre-allocated and reserved for use only
during memory shortage conditions resulting in failed memory allocations. The
minimum value is 2 and is also the default. There is no reason a user would
want to change this value, it's mostly aimed at HAProxy core developers.
tune.bufsize <number>
Sets the buffer size to this size (in bytes). Lower values allow more
sessions to coexist in the same amount of RAM, and higher values allow some
applications with very large cookies to work. The default value is 16384 and
can be changed at build time. It is strongly recommended not to change this
from the default value, as very low values will break some services such as
statistics, and values larger than default size will increase memory usage,
possibly causing the system to run out of memory. At least the global maxconn
parameter should be decreased by the same factor as this one is increased. In
addition, use of HTTP/2 mandates that this value must be 16384 or more. If an
HTTP request is larger than (tune.bufsize - tune.maxrewrite), HAProxy will
return HTTP 400 (Bad Request) error. Similarly if an HTTP response is larger
than this size, HAProxy will return HTTP 502 (Bad Gateway). Note that the
value set using this parameter will automatically be rounded up to the next
multiple of 8 on 32-bit machines and 16 on 64-bit machines.
tune.chksize <number> (deprecated)
This option is deprecated and ignored.
Sets the maximum compression level. The compression level affects CPU
usage during compression. This value affects CPU usage during compression.
Each session using compression initializes the compression algorithm with
this value. The default value is 1.
If compiled with DEBUG_FAIL_ALLOC, gives the percentage of chances an
allocation attempt fails. Must be between 0 (no failure) and 100 (no
success). This is useful to debug and make sure memory failures are handled
gracefully.
tune.fd.edge-triggered { on | off } [ EXPERIMENTAL ]
Enables ('on') or disables ('off') the edge-triggered polling mode for FDs
that support it. This is currently only support with epoll. It may noticeably
reduce the number of epoll_ctl() calls and slightly improve performance in
certain scenarios. This is still experimental, it may result in frozen
connections if bugs are still present, and is disabled by default.
Sets the HTTP/2 dynamic header table size. It defaults to 4096 bytes and
cannot be larger than 65536 bytes. A larger value may help certain clients
send more compact requests, depending on their capabilities. This amount of
memory is consumed for each HTTP/2 connection. It is recommended not to
change it.
Sets the HTTP/2 initial window size, which is the number of bytes the client
can upload before waiting for an acknowledgment from HAProxy. This setting
only affects payload contents (i.e. the body of POST requests), not headers.
The default value is 65535, which roughly allows up to 5 Mbps of upload
bandwidth per client over a network showing a 100 ms ping time, or 500 Mbps
over a 1-ms local network. It can make sense to increase this value to allow
faster uploads, or to reduce it to increase fairness when dealing with many
clients. It doesn't affect resource usage.
Sets the HTTP/2 maximum number of concurrent streams per connection (ie the
number of outstanding requests on a single connection). The default value is
100. A larger one may slightly improve page load time for complex sites when
visited over high latency networks, but increases the amount of resources a
single client may allocate. A value of zero disables the limit so a single
client may create as many streams as allocatable by HAProxy. It is highly
recommended not to change this value.
Sets the HTTP/2 maximum frame size that HAProxy announces it is willing to
receive to its peers. The default value is the largest between 16384 and the
buffer size (tune.bufsize). In any case, HAProxy will not announce support
for frame sizes larger than buffers. The main purpose of this setting is to
allow to limit the maximum frame size setting when using large buffers. Too
large frame sizes might have performance impact or cause some peers to
misbehave. It is highly recommended not to change this value.
Sets the maximum length of captured cookies. This is the maximum value that
the "capture cookie xxx len yyy" will be allowed to take, and any upper value
will automatically be truncated to this one. It is important not to set too
high a value because all cookie captures still allocate this size whatever
their configured value (they share a same pool). This value is per request
per response, so the memory allocated is twice this value per connection.
When not specified, the limit is set to 63 characters. It is recommended not
to change this value.
Sets the maximum length of request URI in logs. This prevents truncating long
request URIs with valuable query strings in log lines. This is not related
to syslog limits. If you increase this limit, you may also increase the
'log ... len yyy' parameter. Your syslog daemon may also need specific
configuration directives too.
The default value is 1024.
Sets the maximum number of headers in a request. When a request comes with a
number of headers greater than this value (including the first line), it is
rejected with a "400 Bad Request" status code. Similarly, too large responses
are blocked with "502 Bad Gateway". The default value is 101, which is enough
for all usages, considering that the widely deployed Apache server uses the
same limit. It can be useful to push this limit further to temporarily allow
a buggy application to work by the time it gets fixed. The accepted range is
1..32767. Keep in mind that each new header consumes 32bits of memory for
each session, so don't push this limit too high.
Enables ('on') or disables ('off') sharing of idle connection pools between
threads for a same server. The default is to share them between threads in
order to minimize the number of persistent connections to a server, and to
optimize the connection reuse rate. But to help with debugging or when
suspecting a bug in HAProxy around connection reuse, it can be convenient to
forcefully disable this idle pool sharing between multiple threads, and force
this option to "off". The default is on. It is strongly recommended against
disabling this option without setting a conservative value on "pool-low-conn"
for all servers relying on connection reuse to achieve a high performance
level, otherwise connections might be closed very often as the thread count
increases.
tune.idletimer <timeout>
Sets the duration after which HAProxy will consider that an empty buffer is
probably associated with an idle stream. This is used to optimally adjust
some packet sizes while forwarding large and small data alternatively. The
decision to use splice() or to send large buffers in SSL is modulated by this
parameter. The value is in milliseconds between 0 and 65535. A value of zero
means that HAProxy will not try to detect idle streams. The default is 1000,
which seems to correctly detect end user pauses (e.g. read a page before
clicking). There should be no reason for changing this value. Please check
tune.ssl.maxrecord below.
Enables ('on') or disables ('off') the listener's multi-queue accept which
spreads the incoming traffic to all threads a "bind" line is allowed to run
on instead of taking them for itself. This provides a smoother traffic
distribution and scales much better, especially in environments where threads
may be unevenly loaded due to external activity (network interrupts colliding
with one thread for example). This option is enabled by default, but it may
be forcefully disabled for troubleshooting or for situations where it is
estimated that the operating system already provides a good enough
distribution and connections are extremely short-lived.
This directive forces the Lua engine to execute a yield each <number> of
instructions executed. This permits interrupting a long script and allows the
HAProxy scheduler to process other tasks like accepting connections or
forwarding traffic. The default value is 10000 instructions. If HAProxy often
executes some Lua code but more responsiveness is required, this value can be
lowered. If the Lua code is quite long and its result is absolutely required
to process the data, the <number> can be increased.
Sets the maximum amount of RAM in megabytes per process usable by Lua. By
default it is zero which means unlimited. It is important to set a limit to
ensure that a bug in a script will not result in the system running out of
memory.
This is the execution timeout for the Lua sessions. This is useful for
preventing infinite loops or spending too much time in Lua. This timeout
counts only the pure Lua runtime. If the Lua does a sleep, the sleep is
not taken in account. The default timeout is 4s.
This is the execution timeout for the Lua services. This is useful for
preventing infinite loops or spending too much time in Lua. This timeout
counts only the pure Lua runtime. If the Lua does a sleep, the sleep is
not taken in account. The default timeout is 4s.
Purpose is the same as "tune.lua.session-timeout", but this timeout is
dedicated to the tasks. By default, this timeout isn't set because a task may
remain alive during of the lifetime of HAProxy. For example, a task used to
check servers.
Sets the maximum number of consecutive connections a process may accept in a
row before switching to other work. In single process mode, higher numbers
used to give better performance at high connection rates, though this is not
the case anymore with the multi-queue. This value applies individually to
each listener, so that the number of processes a listener is bound to is
taken into account. This value defaults to 4 which showed best results. If a
significantly higher value was inherited from an ancient config, it might be
worth removing it as it will both increase performance and lower response
time. In multi-process mode, it is divided by twice the number of processes
the listener is bound to. Setting this value to -1 completely disables the
limitation. It should normally not be needed to tweak this value.
Sets the maximum amount of events that can be processed at once in a call to
the polling system. The default value is adapted to the operating system. It
has been noticed that reducing it below 200 tends to slightly decrease
latency at the expense of network bandwidth, and increasing it above 200
tends to trade latency for slightly increased bandwidth.
Sets the reserved buffer space to this size in bytes. The reserved space is
used for header rewriting or appending. The first reads on sockets will never
fill more than bufsize-maxrewrite. Historically it has defaulted to half of
bufsize, though that does not make much sense since there are rarely large
numbers of headers to add. Setting it too high prevents processing of large
requests or responses. Setting it too low prevents addition of new headers
to already large requests or to POST requests. It is generally wise to set it
to about 1024. It is automatically readjusted to half of bufsize if it is
larger than that. This means you don't have to worry about it when changing
bufsize.
Sets the size of the pattern lookup cache to <number> entries. This is an LRU
cache which reminds previous lookups and their results. It is used by ACLs
and maps on slow pattern lookups, namely the ones using the "sub", "reg",
"dir", "dom", "end", "bin" match methods as well as the case-insensitive
strings. It applies to pattern expressions which means that it will be able
to memorize the result of a lookup among all the patterns specified on a
configuration line (including all those loaded from files). It automatically
invalidates entries which are updated using HTTP actions or on the CLI. The
default cache size is set to 10000 entries, which limits its footprint to
about 5 MB per process/thread on 32-bit systems and 8 MB per process/thread
on 64-bit systems, as caches are thread/process local. There is a very low
risk of collision in this cache, which is in the order of the size of the
cache divided by 2^64. Typically, at 10000 requests per second with the
default cache size of 10000 entries, there's 1% chance that a brute force
attack could cause a single collision after 60 years, or 0.1% after 6 years.
This is considered much lower than the risk of a memory corruption caused by
aging components. If this is not acceptable, the cache can be disabled by
setting this parameter to 0.
tune.pipesize <number>
Sets the kernel pipe buffer size to this size (in bytes). By default, pipes
are the default size for the system. But sometimes when using TCP splicing,
it can improve performance to increase pipe sizes, especially if it is
suspected that pipes are not filled and that many calls to splice() are
performed. This has an impact on the kernel's memory footprint, so this must
not be changed if impacts are not understood.
This setting sets the max number of file descriptors (in percentage) used by
HAProxy globally against the maximum number of file descriptors HAProxy can
use before we start killing idle connections when we can't reuse a connection
and we have to create a new one. The default is 25 (one quarter of the file
descriptor will mean that roughly half of the maximum front connections can
keep an idle connection behind, anything beyond this probably doesn't make
much sense in the general case when targeting connection reuse).
This setting sets the max number of file descriptors (in percentage) used by
HAProxy globally against the maximum number of file descriptors HAProxy can
use before we stop putting connection into the idle pool for reuse. The
default is 20.
Forces the kernel socket receive buffer size on the client or the server side
to the specified value in bytes. This value applies to all TCP/HTTP frontends
and backends. It should normally never be set, and the default size (0) lets
the kernel auto-tune this value depending on the amount of available memory.
However it can sometimes help to set it to very low values (e.g. 4096) in
order to save kernel memory by preventing it from buffering too large amounts
of received data. Lower values will significantly increase CPU usage though.
HAProxy uses some hints to detect that a short read indicates the end of the
socket buffers. One of them is that a read returns more than <recv_enough>
bytes, which defaults to 10136 (7 segments of 1448 each). This default value
may be changed by this setting to better deal with workloads involving lots
of short messages such as telnet or SSH sessions.
Sets the maximum amount of task that can be processed at once when running
tasks. The default value depends on the number of threads but sits between 35
and 280, which tend to show the highest request rates and lowest latencies.
Increasing it may incur latency when dealing with I/Os, making it too small
can incur extra overhead. Higher thread counts benefit from lower values.
When experimenting with much larger values, it may be useful to also enable
tune.sched.low-latency and possibly tune.fd.edge-triggered to limit the
maximum latency to the lowest possible.
Enables ('on') or disables ('off') the low-latency task scheduler. By default
HAProxy processes tasks from several classes one class at a time as this is
the most efficient. But when running with large values of tune.runqueue-depth
this can have a measurable effect on request or connection latency. When this
low-latency setting is enabled, tasks of lower priority classes will always
be executed before other ones if they exist. This will permit to lower the
maximum latency experienced by new requests or connections in the middle of
massive traffic, at the expense of a higher impact on this large traffic.
For regular usage it is better to leave this off. The default value is off.
Forces the kernel socket send buffer size on the client or the server side to
the specified value in bytes. This value applies to all TCP/HTTP frontends
and backends. It should normally never be set, and the default size (0) lets
the kernel auto-tune this value depending on the amount of available memory.
However it can sometimes help to set it to very low values (e.g. 4096) in
order to save kernel memory by preventing it from buffering too large amounts
of received data. Lower values will significantly increase CPU usage though.
Another use case is to prevent write timeouts with extremely slow clients due
to the kernel waiting for a large part of the buffer to be read before
notifying HAProxy again.
Sets the size of the global SSL session cache, in a number of blocks. A block
is large enough to contain an encoded session without peer certificate.  An
encoded session with peer certificate is stored in multiple blocks depending
on the size of the peer certificate. A block uses approximately 200 bytes of
memory (based on `sizeof(struct sh_ssl_sess_hdr) + SHSESS_BLOCK_MIN_SIZE`
calculation used for `shctx_init` function). The default value may be forced
at build time, otherwise defaults to 20000. When the cache is full, the most
idle entries are purged and reassigned. Higher values reduce the occurrence
of such a purge, hence the number of CPU-intensive SSL handshakes by ensuring
that all users keep their session as long as possible. All entries are
pre-allocated upon startup and are shared between all processes if "nbproc"
is greater than 1. Setting this value to 0 disables the SSL session cache.
Sets the maximum size of the buffer used for capturing client hello cipher
list, extensions list, elliptic curves list and elliptic curve point
formats. If the value is 0 (default value) the capture is disabled,
otherwise a buffer is allocated for each SSL/TLS connection.
Sets the maximum size of the Diffie-Hellman parameters used for generating
the ephemeral/temporary Diffie-Hellman key in case of DHE key exchange. The
final size will try to match the size of the server's RSA (or DSA) key (e.g,
a 2048 bits temporary DH key for a 2048 bits RSA key), but will not exceed
this maximum value. Only 1024 or higher values are allowed. Higher values
will increase the CPU load, and values greater than 1024 bits are not
supported by Java 7 and earlier clients. This value is not used if static
Diffie-Hellman parameters are supplied either directly in the certificate
file or by using the ssl-dh-param-file parameter.
If there is neither a default-dh-param nor a ssl-dh-param-file defined, and
if the server's PEM file of a given frontend does not specify its own DH
parameters, then DHE ciphers will be unavailable for this frontend.
This option disables SSL session cache sharing between all processes. It
should normally not be used since it will force many renegotiations due to
clients hitting a random process. But it may be required on some operating
systems where none of the SSL cache synchronization method may be used. In
this case, adding a first layer of hash-based load balancing before the SSL
layer might limit the impact of the lack of session sharing.
tune.ssl.keylog { on | off }
This option activates the logging of the TLS keys. It should be used with
care as it will consume more memory per SSL session and could decrease
performances. This is disabled by default.

These sample fetches should be used to generate the SSLKEYLOGFILE that is
required to decipher traffic with wireshark.

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format

The SSLKEYLOG is a series of lines which are formatted this way:

  <Label> <space> <ClientRandom> <space> <Secret>

The ClientRandom is provided by the %[ssl_fc_client_random,hex] sample
fetch, the secret and the Label could be find in the array below. You need
to generate a SSLKEYLOGFILE with all the labels in this array.

The following sample fetches are hexadecimal strings and does not need to be
converted.

SSLKEYLOGFILE Label             |  Sample fetches for the Secrets
--------------------------------|-----------------------------------------
CLIENT_EARLY_TRAFFIC_SECRET     |  %[ssl_fc_client_early_traffic_secret]
CLIENT_HANDSHAKE_TRAFFIC_SECRET |  %[ssl_fc_client_handshake_traffic_secret]
SERVER_HANDSHAKE_TRAFFIC_SECRET |  %[ssl_fc_server_handshake_traffic_secret]
CLIENT_TRAFFIC_SECRET_0         |  %[ssl_fc_client_traffic_secret_0]
SERVER_TRAFFIC_SECRET_0         |  %[ssl_fc_server_traffic_secret_0]
EXPORTER_SECRET                 |  %[ssl_fc_exporter_secret]
EARLY_EXPORTER_SECRET           |  %[ssl_fc_early_exporter_secret]

This is only available with OpenSSL 1.1.1, and useful with TLS1.3 session.

If you want to generate the content of a SSLKEYLOGFILE with TLS < 1.3, you
only need this line:

"CLIENT_RANDOM %[ssl_fc_client_random,hex] %[ssl_fc_session_key,hex]"
Sets how long a cached SSL session may remain valid. This time is expressed
in seconds and defaults to 300 (5 min). It is important to understand that it
does not guarantee that sessions will last that long, because if the cache is
full, the longest idle sessions will be purged despite their configured
lifetime. The real usefulness of this setting is to prevent sessions from
being used for too long.
Sets the maximum amount of bytes passed to SSL_write() at a time. Default
value 0 means there is no limit. Over SSL/TLS, the client can decipher the
data only once it has received a full record. With large records, it means
that clients might have to download up to 16kB of data before starting to
process them. Limiting the value can improve page load times on browsers
located over high latency or low bandwidth networks. It is suggested to find
optimal values which fit into 1 or 2 TCP segments (generally 1448 bytes over
Ethernet with TCP timestamps enabled, or 1460 when timestamps are disabled),
keeping in mind that SSL/TLS add some overhead. Typical values of 1419 and
2859 gave good results during tests. Use "strace -e trace=write" to find the
best value. HAProxy will automatically switch to this setting after an idle
stream has been detected (see tune.idletimer above).
Sets the size of the cache used to store generated certificates to <number>
entries. This is a LRU cache. Because generating a SSL certificate
dynamically is expensive, they are cached. The default cache size is set to
1000 entries.
These five tunes help to manage the maximum amount of memory used by the
variables system. "global" limits the overall amount of memory available for
all scopes. "proc" limits the memory for the process scope, "sess" limits the
memory for the session scope, "txn" for the transaction scope, and "reqres"
limits the memory for each request or response processing.
Memory accounting is hierarchical, meaning more coarse grained limits include
the finer grained ones: "proc" includes "sess", "sess" includes "txn", and
"txn" includes "reqres".

For example, when "tune.vars.sess-max-size" is limited to 100,
"tune.vars.txn-max-size" and "tune.vars.reqres-max-size" cannot exceed
100 either. If we create a variable "txn.var" that contains 100 bytes,
all available space is consumed.
Notice that exceeding the limits at runtime will not result in an error
message, but values might be cut off or corrupted. So make sure to accurately
plan for the amount of space needed to store all your variables.
Sets the memLevel parameter in zlib initialization for each session. It
defines how much memory should be allocated for the internal compression
state. A value of 1 uses minimum memory but is slow and reduces compression
ratio, a value of 9 uses maximum memory for optimal speed. Can be a value
between 1 and 9. The default value is 8.
Sets the window size (the size of the history buffer) as a parameter of the
zlib initialization for each session. Larger values of this parameter result
in better compression at the expense of memory usage. Can be a value between
8 and 15. The default value is 15.

3.3. Debugging

Do not display any message during startup. It is equivalent to the command-
line argument "-q".
When this option is set, HAProxy will refuse to start if any warning was
emitted while processing the configuration. It is highly recommended to set
this option on configurations that are not changed often, as it helps detect
subtle mistakes and keep the configuration clean and forward-compatible. Note
that "haproxy -c" will also report errors in such a case. This option is
equivalent to command line argument "-dW".

3.4. Userlists

It is possible to control access to frontend/backend/listen sections or to
http stats by allowing only authenticated and authorized users. To do this,
it is required to create at least one userlist and to define users.
userlist <listname>
Creates new userlist with name <listname>. Many independent userlists can be
used to store authentication & authorization data for independent customers.
group <groupname> [users <user>,<user>,(...)]
Adds group <groupname> to the current userlist. It is also possible to
attach users to this group by using a comma separated list of names
proceeded by "users" keyword.
user <username> [password|insecure-password <password>] [groups <group>,<group>,(...)]
Adds user <username> to the current userlist. Both secure (encrypted) and
insecure (unencrypted) passwords can be used. Encrypted passwords are
evaluated using the crypt(3) function, so depending on the system's
capabilities, different algorithms are supported. For example, modern Glibc
based Linux systems support MD5, SHA-256, SHA-512, and, of course, the
classic DES-based method of encrypting passwords.

Attention: Be aware that using encrypted passwords might cause significantly
increased CPU usage, depending on the number of requests, and the algorithm
used. For any of the hashed variants, the password for each request must
be processed through the chosen algorithm, before it can be compared to the
value specified in the config file. Most current algorithms are deliberately
designed to be expensive to compute to achieve resistance against brute
force attacks. They do not simply salt/hash the clear text password once,
but thousands of times. This can quickly become a major factor in HAProxy's
overall CPU consumption!
Example:
userlist L1
  group G1 users tiger,scott
  group G2 users xdb,scott

  user tiger password $6$k6y3o.eP$JlKBx9za9667qe4(...)xHSwRv6J.C0/D7cV91
  user scott insecure-password elgato
  user xdb insecure-password hello

userlist L2
  group G1
  group G2

  user tiger password $6$k6y3o.eP$JlKBx(...)xHSwRv6J.C0/D7cV91 groups G1
  user scott insecure-password elgato groups G1,G2
  user xdb insecure-password hello groups G2
Please note that both lists are functionally identical.

3.5. Peers

It is possible to propagate entries of any data-types in stick-tables between
several HAProxy instances over TCP connections in a multi-master fashion. Each
instance pushes its local updates and insertions to remote peers. The pushed
values overwrite remote ones without aggregation. Interrupted exchanges are
automatically detected and recovered from the last known point.
In addition, during a soft restart, the old process connects to the new one
using such a TCP connection to push all its entries before the new process
tries to connect to other peers. That ensures very fast replication during a
reload, it typically takes a fraction of a second even for large tables.
Note that Server IDs are used to identify servers remotely, so it is important
that configurations look similar or at least that the same IDs are forced on
each server on all participants.
peers <peersect>
Creates a new peer list with name <peersect>. It is an independent section,
which is referenced by one or more stick-tables.
bind [<address>]:port [param*]
bind /<path> [param*]
Defines the binding parameters of the local peer of this "peers" section.
Such lines are not supported with "peer" line in the same "peers" section.
Disables a peers section. It disables both listening and any synchronization
related to this section. This is provided to disable synchronization of stick
tables without having to comment out all "peers" references.
default-bind [param*]
Defines the binding parameters for the local peer, excepted its address.
Change default options for a server in a "peers" section.
Arguments:
<param*>  is a list of parameters for this server. The "default-server"
          keyword accepts an important number of options and has a complete
          section dedicated to it. In a peers section, the transport
          parameters of a "default-server" line are supported. Please refer
          to section 5 for more details, and the "server" keyword below in
          this section for some of the restrictions.
This re-enables a peers section which was previously disabled via the
"disabled" keyword.
log <address> [len <length>] [format <format>] [sample <ranges>:<sample_size>] <facility> [<level> [<minlevel>]]
"peers" sections support the same "log" keyword as for the proxies to
log information about the "peers" listener. See "log" option for proxies for
more details.
peer <peername> [<address>]:port [param*]
peer <peername> /<path> [param*]
Defines a peer inside a peers section.
If <peername> is set to the local peer name (by default hostname, or forced
using "-L" command line option or "localpeer" global configuration setting),
HAProxy will listen for incoming remote peer connection on the provided
address.  Otherwise, the address defines where to connect to in order to join
the remote peer, and <peername> is used at the protocol level to identify and
validate the remote peer on the server side.

During a soft restart, local peer address is used by the old instance to
connect the new one and initiate a complete replication (teaching process).

It is strongly recommended to have the exact same peers declaration on all
peers and to only rely on the "-L" command line argument or the "localpeer"
global configuration setting to change the local peer name. This makes it
easier to maintain coherent configuration files across all peers.

You may want to reference some environment variables in the address
parameter, see section 2.3 about environment variables.

Note: "peer" keyword may transparently be replaced by "server" keyword (see
"server" keyword explanation below).
server <peername> [<address>:<port>] [param*]
server <peername> [/<path>] [param*]
As previously mentioned, "peer" keyword may be replaced by "server" keyword
with a support for all "server" parameters found in 5.2 paragraph that are
related to transport settings. If the underlying peer is local, the address
parameter must not be present; it must be provided on a "bind" line (see
"bind" keyword of this "peers" section).

A number of "server" parameters are irrelevant for "peers" sections. Peers by
nature do not support dynamic host name resolution nor health checks, hence
parameters like "init_addr", "resolvers", "check", "agent-check", or "track"
are not supported. Similarly, there is no load balancing nor stickiness, thus
parameters such as "weight" or "cookie" have no effect.
Example:
 # The old way.
 peers mypeers
     peer haproxy1 192.168.0.1:1024
     peer haproxy2 192.168.0.2:1024
     peer haproxy3 10.2.0.1:1024

 backend mybackend
     mode tcp
     balance roundrobin
     stick-table type ip size 20k peers mypeers
     stick on src

     server srv1 192.168.0.30:80
     server srv2 192.168.0.31:80

Example:
  peers mypeers
     bind 192.168.0.1:1024 ssl crt mycerts/pem
     default-server ssl verify none
     server haproxy1 #local peer
     server haproxy2 192.168.0.2:1024
     server haproxy3 10.2.0.1:1024
table <tablename> type {ip | integer | string [len <length>] | binary [len <length>]} size <size> [expire <expire>] [nopurge] [store <data_type>]*
Configure a stickiness table for the current section. This line is parsed
exactly the same way as the "stick-table" keyword in others section, except
for the "peers" argument which is not required here and with an additional
mandatory first parameter to designate the stick-table. Contrary to others
sections, there may be several "table" lines in "peers" sections (see also
"stick-table" keyword).

Also be aware of the fact that "peers" sections have their own stick-table
namespaces to avoid collisions between stick-table names identical in
different "peers" section. This is internally handled prepending the "peers"
sections names to the name of the stick-tables followed by a '/' character.
If somewhere else in the configuration file you have to refer to such
stick-tables declared in "peers" sections you must use the prefixed version
of the stick-table name as follows:

    peers mypeers
        peer A ...
        peer B ...
        table t1 ...

    frontend fe1
        tcp-request content track-sc0 src table mypeers/t1

This is also this prefixed version of the stick-table names which must be
used to refer to stick-tables through the CLI.

About "peers" protocol, as only "peers" belonging to the same section may
communicate with each others, there is no need to do such a distinction.
Several "peers" sections may declare stick-tables with the same name.
This is shorter version of the stick-table name  which is sent over the network.
There is only a '/' character as prefix to avoid stick-table name collisions between
stick-tables declared as backends and stick-table declared in "peers" sections
as follows in this weird but supported configuration:

    peers mypeers
        peer A ...
        peer B ...
        table t1 type string size 10m store gpc0

    backend t1
        stick-table type string size 10m store gpc0 peers mypeers

Here "t1" table declared in "mypeers" section has "mypeers/t1" as global name.
"t1" table declared as a backend as "t1" as global name. But at peer protocol
level the former table is named "/t1", the latter is again named "t1".

3.6. Mailers

It is possible to send email alerts when the state of servers changes.
If configured email alerts are sent to each mailer that is configured
in a mailers section. Email is sent to mailers using SMTP.
mailers <mailersect>
Creates a new mailer list with the name <mailersect>. It is an
independent section which is referenced by one or more proxies.
mailer <mailername> <ip>:<port>
Defines a mailer inside a mailers section.
Example:
mailers mymailers
    mailer smtp1 192.168.0.1:587
    mailer smtp2 192.168.0.2:587

backend mybackend
    mode tcp
    balance roundrobin

    email-alert mailers mymailers
    email-alert from test1@horms.org
    email-alert to test2@horms.org

    server srv1 192.168.0.30:80
    server srv2 192.168.0.31:80
Defines the time available for a mail/connection to be made and send to
the mail-server. If not defined the default value is 10 seconds. To allow
for at least two SYN-ACK packets to be send during initial TCP handshake it
is advised to keep this value above 4 seconds.
Example:
mailers mymailers
    timeout mail 20s
    mailer smtp1 192.168.0.1:587

3.7. Programs

In master-worker mode, it is possible to launch external binaries with the
master, these processes are called programs. These programs are launched and
managed the same way as the workers.

During a reload of HAProxy, those processes are dealing with the same
sequence as a worker:

  - the master is re-executed
  - the master sends a SIGUSR1 signal to the program
  - if "option start-on-reload" is not disabled, the master launches a new
    instance of the program

During a stop, or restart, a SIGTERM is sent to the programs.
program <name>
This is a new program section, this section will create an instance <name>
which is visible in "show proc" on the master CLI. (See "9.4. Master CLI" in
the management guide).
command <command> [arguments*]
Define the command to start with optional arguments. The command is looked
up in the current PATH if it does not include an absolute path. This is a
mandatory option of the program section. Arguments containing spaces must
be enclosed in quotes or double quotes or be prefixed by a backslash.
user <user name>
Changes the executed command user ID to the <user name> from /etc/passwd.
See also "group".
group <group name>
Changes the executed command group ID to the <group name> from /etc/group.
See also "user".
Start (or not) a new instance of the program upon a reload of the master.
The default is to start a new instance. This option may only be used in a
program section.

3.8. HTTP-errors

It is possible to globally declare several groups of HTTP errors, to be
imported afterwards in any proxy section. Same group may be referenced at
several places and can be fully or partially imported.
Create a new http-errors group with the name <name>. It is an independent
section that may be referenced by one or more proxies using its name.
errorfile <code> <file>
Associate a file contents to an HTTP error code
Arguments :
<code>    is the HTTP status code. Currently, HAProxy is capable of
          generating codes 200, 400, 401, 403, 404, 405, 407, 408, 410,
          425, 429, 500, 501, 502, 503, and 504.

<file>    designates a file containing the full HTTP response. It is
          recommended to follow the common practice of appending ".http" to
          the filename so that people do not confuse the response with HTML
          error pages, and to use absolute paths, since files are read
          before any chroot is performed.
Please referrers to "errorfile" keyword in section 4 for details.
Example:
http-errors website-1
    errorfile 400 /etc/haproxy/errorfiles/site1/400.http
    errorfile 404 /etc/haproxy/errorfiles/site1/404.http
    errorfile 408 /dev/null  # work around Chrome pre-connect bug

http-errors website-2
    errorfile 400 /etc/haproxy/errorfiles/site2/400.http
    errorfile 404 /etc/haproxy/errorfiles/site2/404.http
    errorfile 408 /dev/null  # work around Chrome pre-connect bug

3.9. Rings

It is possible to globally declare ring-buffers, to be used as target for log
servers or traces.
ring <ringname>
Creates a new ring-buffer with name <ringname>.
The description is an optional description string of the ring. It will
appear on CLI. By default, <name> is reused to fill this field.
format <format>
Format used to store events into the ring buffer.
Arguments:
<format> is the log format used when generating syslog messages. It may be
         one of the following :

  iso     A message containing only the ISO date, followed by the text.
          The PID, process name and system name are omitted. This is
          designed to be used with a local log server.

  local   Analog to rfc3164 syslog message format except that hostname
          field is stripped. This is the default.
          Note: option "log-send-hostname" switches the default to
          rfc3164.

  raw     A message containing only the text. The level, PID, date, time,
          process name and system name are omitted. This is designed to be
          used in containers or during development, where the severity
          only depends on the file descriptor used (stdout/stderr). This
          is the default.

  rfc3164 The RFC3164 syslog message format.
          (https://tools.ietf.org/html/rfc3164)

  rfc5424 The RFC5424 syslog message format.
          (https://tools.ietf.org/html/rfc5424)

  short   A message containing only a level between angle brackets such as
          '<3>', followed by the text. The PID, date, time, process name
          and system name are omitted. This is designed to be used with a
          local log server. This format is compatible with what the systemd
          logger consumes.

 priority A message containing only a level plus syslog facility between angle
          brackets such as '<63>', followed by the text. The PID, date, time,
          process name and system name are omitted. This is designed to be used
          with a local log server.

  timed   A message containing only a level between angle brackets such as
          '<3>', followed by ISO date and by the text. The PID, process
          name and system name are omitted. This is designed to be
          used with a local log server.
maxlen <length>
The maximum length of an event message stored into the ring,
including formatted header. If an event message is longer than
<length>, it will be truncated to this length.
server <name> <address> [param*]
Used to configure a syslog tcp server to forward messages from ring buffer.
This supports for all "server" parameters found in 5.2 paragraph. Some of
these parameters are irrelevant for "ring" sections. Important point: there
is little reason to add more than one server to a ring, because all servers
will receive the exact same copy of the ring contents, and as such the ring
will progress at the speed of the slowest server. If one server does not
respond, it will prevent old messages from being purged and may block new
messages from being inserted into the ring. The proper way to send messages
to multiple servers is to use one distinct ring per log server, not to
attach multiple servers to the same ring. Note that specific server directive
"log-proto" is used to set the protocol used to send messages.
size <size>
This is the optional size in bytes for the ring-buffer. Default value is
set to BUFSIZE.
timeout connect <timeout>
Set the maximum time to wait for a connection attempt to a server to succeed.
Arguments :
<timeout> is the timeout value specified in milliseconds by default, but
          can be in any other unit if the number is suffixed by the unit,
          as explained at the top of this document.
timeout server <timeout>
Set the maximum time for pending data staying into output buffer.
Arguments :
<timeout> is the timeout value specified in milliseconds by default, but
          can be in any other unit if the number is suffixed by the unit,
          as explained at the top of this document.
Example:
global
    log ring@myring local7

ring myring
    description "My local buffer"
    format rfc3164
    maxlen 1200
    size 32764
    timeout connect 5s
    timeout server 10s
    server mysyslogsrv 127.0.0.1:6514 log-proto octet-count

3.10. Log forwarding

It is possible to declare one or multiple log forwarding section,
HAProxy will forward all received log messages to a log servers list.
Creates a new log forwarder proxy identified as <name>.
backlog <conns>
Give hints to the system about the approximate listen backlog desired size
on connections accept.
bind <addr> [param*]
Used to configure a stream log listener to receive messages to forward.
This supports the "bind" parameters found in 5.1 paragraph including
those about ssl but some statements such as "alpn" may be irrelevant for
syslog protocol over TCP.
Those listeners support both "Octet Counting" and "Non-Transparent-Framing"
modes as defined in rfc-6587.
dgram-bind <addr> [param*]
Used to configure a datagram log listener to receive messages to forward.
Addresses must be in IPv4 or IPv6 form,followed by a port. This supports
for some of the "bind" parameters found in 5.1 paragraph among which
"interface", "namespace" or "transparent", the other ones being
silently ignored as irrelevant for UDP/syslog case.
log <address> [len <length>] [format <format>] [sample <ranges>:<sample_size>] <facility> [<level> [<minlevel>]]
Used to configure target log servers. See more details on proxies
documentation.
If no format specified, HAProxy tries to keep the incoming log format.
Configured facility is ignored, except if incoming message does not
present a facility but one is mandatory on the outgoing format.
If there is no timestamp available in the input format, but the field
exists in output format, HAProxy will use the local date.
Example:
global
   log stderr format iso local7

ring myring
    description "My local buffer"
    format rfc5424
    maxlen 1200
    size 32764
    timeout connect 5s
    timeout server 10s
    # syslog tcp server
    server mysyslogsrv 127.0.0.1:514 log-proto octet-count

log-forward sylog-loadb
    dgram-bind 127.0.0.1:1514
    bind 127.0.0.1:1514
    # all messages on stderr
    log global
    # all messages on local tcp syslog server
    log ring@myring local0
    # load balance messages on 4 udp syslog servers
    log 127.0.0.1:10001 sample 1:4 local0
    log 127.0.0.1:10002 sample 2:4 local0
    log 127.0.0.1:10003 sample 3:4 local0
    log 127.0.0.1:10004 sample 4:4 local0
maxconn <conns>
Fix the maximum number of concurrent connections on a log forwarder.
10 is the default.
timeout client <timeout>
Set the maximum inactivity time on the client side.
Proxy configuration can be located in a set of sections :
 - defaults [<name>] [ from <defaults_name> ]
 - frontend <name>   [ from <defaults_name> ]
 - backend  <name>   [ from <defaults_name> ]
 - listen   <name>   [ from <defaults_name> ]

A "frontend" section describes a set of listening sockets accepting client
connections.

A "backend" section describes a set of servers to which the proxy will connect
to forward incoming connections.

A "listen" section defines a complete proxy with its frontend and backend
parts combined in one section. It is generally useful for TCP-only traffic.

A "defaults" section resets all settings to the documented ones and presets new
ones for use by subsequent sections. All of "frontend", "backend" and "listen"
sections always take their initial settings from a defaults section, by default
the latest one that appears before the newly created section. It is possible to
explicitly designate a specific "defaults" section to load the initial settings
from by indicating its name on the section line after the optional keyword
"from". While "defaults" section do not impose a name, this use is encouraged
for better readability. It is also the only way to designate a specific section
to use instead of the default previous one. Since "defaults" section names are
optional, by default a very permissive check is applied on their name and these
are even permitted to overlap. However if a "defaults" section is referenced by
any other section, its name must comply with the syntax imposed on all proxy
names, and this name must be unique among the defaults sections. Please note
that regardless of what is currently permitted, it is recommended to avoid
duplicate section names in general and to respect the same syntax as for proxy
names. This rule might be enforced in a future version.

Note that it is even possible for a defaults section to take its initial
settings from another one, and as such, inherit settings across multiple levels
of defaults sections. This can be convenient to establish certain configuration
profiles to carry groups of default settings (e.g. TCP vs HTTP or short vs long
timeouts) but can quickly become confusing to follow.

All proxy names must be formed from upper and lower case letters, digits,
'-' (dash), '_' (underscore) , '.' (dot) and ':' (colon). ACL names are
case-sensitive, which means that "www" and "WWW" are two different proxies.

Historically, all proxy names could overlap, it just caused troubles in the
logs. Since the introduction of content switching, it is mandatory that two
proxies with overlapping capabilities (frontend/backend) have different names.
However, it is still permitted that a frontend and a backend share the same
name, as this configuration seems to be commonly encountered.

Right now, two major proxy modes are supported : "tcp", also known as layer 4,
and "http", also known as layer 7. In layer 4 mode, HAProxy simply forwards
bidirectional traffic between two sides. In layer 7 mode, HAProxy analyzes the
protocol, and can interact with it by allowing, blocking, switching, adding,
modifying, or removing arbitrary contents in requests or responses, based on
arbitrary criteria.

In HTTP mode, the processing applied to requests and responses flowing over
a connection depends in the combination of the frontend's HTTP options and
the backend's. HAProxy supports 3 connection modes :

  - KAL : keep alive ("option http-keep-alive") which is the default mode : all
    requests and responses are processed, and connections remain open but idle
    between responses and new requests.

  - SCL: server close ("option http-server-close") : the server-facing
    connection is closed after the end of the response is received, but the
    client-facing connection remains open.

  - CLO: close ("option httpclose"): the connection is closed after the end of
    the response and "Connection: close" appended in both directions.

The effective mode that will be applied to a connection passing through a
frontend and a backend can be determined by both proxy modes according to the
following matrix, but in short, the modes are symmetric, keep-alive is the
weakest option and close is the strongest.

                   Backend mode

                | KAL | SCL | CLO
            ----+-----+-----+----
            KAL | KAL | SCL | CLO
            ----+-----+-----+----
   mode     SCL | SCL | SCL | CLO
            ----+-----+-----+----
            CLO | CLO | CLO | CLO

It is possible to chain a TCP frontend to an HTTP backend. It is pointless if
only HTTP traffic is handled. But it may be used to handle several protocols
within the same frontend. In this case, the client's connection is first handled
as a raw tcp connection before being upgraded to HTTP. Before the upgrade, the
content processings are performend on raw data. Once upgraded, data is parsed
and stored using an internal representation called HTX and it is no longer
possible to rely on raw representation. There is no way to go back.

There are two kind of upgrades, in-place upgrades and destructive upgrades. The
first ones involves a TCP to HTTP/1 upgrade. In HTTP/1, the request
processings are serialized, thus the applicative stream can be preserved. The
second one involves a TCP to HTTP/2 upgrade. Because it is a multiplexed
protocol, the applicative stream cannot be associated to any HTTP/2 stream and
is destroyed. New applicative streams are then created when HAProxy receives
new HTTP/2 streams at the lower level, in the H2 multiplexer. It is important
to understand this difference because that drastically changes the way to
process data. When an HTTP/1 upgrade is performed, the content processings
already performed on raw data are neither lost nor reexecuted while for an
HTTP/2 upgrade, applicative streams are distinct and all frontend rules are
evaluated systematically on each one. And as said, the first stream, the TCP
one, is destroyed, but only after the frontend rules were evaluated.

There is another importnat point to understand when HTTP processings are
performed from a TCP proxy. While HAProxy is able to parse HTTP/1 in-fly from
tcp-request content rules, it is not possible for HTTP/2. Only the HTTP/2
preface can be parsed. This is a huge limitation regarding the HTTP content
analysis in TCP. Concretely it is only possible to know if received data are
HTTP. For instance, it is not possible to choose a backend based on the Host
header value while it is trivial in HTTP/1. Hopefully, there is a solution to
mitigate this drawback.

There are two ways to perform an HTTP upgrade. The first one, the historical
method, is to select an HTTP backend. The upgrade happens when the backend is
set. Thus, for in-place upgrades, only the backend configuration is considered
in the HTTP data processing. For destructive upgrades, the applicative stream
is destroyed, thus its processing is stopped. With this method, possibilities
to choose a backend with an HTTP/2 connection are really limited, as mentioned
above, and a bit useless because the stream is destroyed. The second method is
to upgrade during the tcp-request content rules evaluation, thanks to the
"switch-mode http" action. In this case, the upgrade is performed in the
frontend context and it is possible to define HTTP directives in this
frontend. For in-place upgrades, it offers all the power of the HTTP analysis
as soon as possible. It is not that far from an HTTP frontend. For destructive
upgrades, it does not change anything except it is useless to choose a backend
on limited information. It is of course the recommended method. Thus, testing
the request protocol from the tcp-request content rules to perform an HTTP
upgrade is enough. All the remaining HTTP manipulation may be moved to the
frontend http-request ruleset. But keep in mind that tcp-request content rules
remains evaluated on each streams, that can't be changed.

4.1. Proxy keywords matrix

The following list of keywords is supported. Most of them may only be used in a
limited set of section types. Some of them are marked as "deprecated" because
they are inherited from an old syntax which may be confusing or functionally
limited, and there are new recommended keywords to replace them. Keywords
marked with "(*)" can be optionally inverted using the "no" prefix, e.g. "no
option contstats". This makes sense when the option has been enabled by default
and must be disabled for a specific instance. Such options may also be prefixed
with "default" in order to restore default settings regardless of what has been
specified in a previous "defaults" section.
keyworddefaultsfrontendlistenbackend
acl XXX
backlogXXX 
balanceX XX
bind XX 
bind-processXXXX
capture cookie XX 
capture request header XX 
capture response header XX 
clitcpka-cntXXX 
clitcpka-idleXXX 
clitcpka-intvlXXX 
compressionXXXX
cookieX XX
declare capture XX 
default-serverX XX
default_backendXXX 
description XXX
disabledXXXX
dispatch  XX
email-alert fromXXXX
keyworddefaultsfrontendlistenbackend
email-alert levelXXXX
email-alert mailersXXXX
email-alert myhostnameXXXX
email-alert toXXXX
enabledXXXX
errorfileXXXX
errorfilesXXXX
errorlocXXXX
errorloc302XXXX
errorloc303XXXX
force-persist  XX
filter XXX
fullconnX XX
graceXXXX
hash-typeX XX
http-after-response XXX
http-check commentX XX
http-check connectX XX
http-check disable-on-404X XX
http-check expectX XX
keyworddefaultsfrontendlistenbackend
http-check sendX XX
http-check send-stateX XX
http-check set-varX XX
http-check unset-varX XX
http-errorXXXX
http-request XXX
http-response XXX
http-reuseX XX
http-send-name-headerX XX
id XXX
ignore-persist  XX
load-server-state-from-fileX XX
(*)logXXXX
log-formatXXX 
log-format-sdXXX 
log-tagXXXX
max-keep-alive-queueX XX
max-session-srv-connsXXX 
maxconnXXX 
modeXXXX
keyworddefaultsfrontendlistenbackend
monitor fail XX 
monitor-uriXXX 
(*)option abortoncloseX XX
(*)option accept-invalid-http-requestXXX 
(*)option accept-invalid-http-responseX XX
(*)option allbackupsX XX
(*)option checkcacheX XX
(*)option clitcpkaXXX 
(*)option contstatsXXX 
(*)option disable-h2-upgradeXXX 
(*)option dontlog-normalXXX 
(*)option dontlognullXXX 
option forwardforXXXX
(*)option h1-case-adjust-bogus-clientXXX 
(*)option h1-case-adjust-bogus-serverX XX
(*)option http-buffer-requestXXXX
(*)option http-ignore-probesXXX 
(*)option http-keep-aliveXXXX
(*)option http-no-delayXXXX
(*)option http-pretend-keepaliveX XX
keyworddefaultsfrontendlistenbackend
option http-restrict-req-hdr-namesXXXX
(*)option http-server-closeXXXX
(*)option http-use-proxy-headerXXX 
option httpchkX XX
(*)option httpcloseXXXX
option httplogXXX 
(*)option http_proxyXXXX
(*)option independent-streamsXXXX
option ldap-checkX XX
option external-checkX XX
(*)option log-health-checksX XX
(*)option log-separate-errorsXXX 
(*)option logasapXXX 
option mysql-checkX XX
(*)option nolingerXXXX
option originaltoXXXX
(*)option persistX XX
option pgsql-checkX XX
(*)option prefer-last-serverX XX
(*)option redispatchX XX
keyworddefaultsfrontendlistenbackend
option redis-checkX XX
option smtpchkX XX
(*)option socket-statsXXX 
(*)option splice-autoXXXX
(*)option splice-requestXXXX
(*)option splice-responseXXXX
option spop-checkX XX
(*)option srvtcpkaX XX
option ssl-hello-chkX XX
option tcp-checkX XX
(*)option tcp-smart-acceptXXX 
(*)option tcp-smart-connectX XX
option tcpkaXXXX
option tcplogXXXX
(*)option transparentX XX
(*)option idle-close-on-responseXXX 
external-check commandX XX
external-check pathX XX
persist rdp-cookieX XX
rate-limit sessionsXXX 
keyworddefaultsfrontendlistenbackend
redirect XXX
retriesX XX
retry-onX XX
server  XX
server-state-file-nameX XX
server-template  XX
sourceX XX
srvtcpka-cntX XX
srvtcpka-idleX XX
srvtcpka-intvlX XX
stats admin XXX
stats authXXXX
stats enableXXXX
stats hide-versionXXXX
stats http-request XXX
stats realmXXXX
stats refreshXXXX
stats scopeXXXX
stats show-descXXXX
stats show-legendsXXXX
keyworddefaultsfrontendlistenbackend
stats show-nodeXXXX
stats uriXXXX
stick match  XX
stick on  XX
stick store-request  XX
stick store-response  XX
stick-table XXX
tcp-check commentX XX
tcp-check connectX XX
tcp-check expectX XX
tcp-check sendX XX
tcp-check send-lfX XX
tcp-check send-binaryX XX
tcp-check send-binary-lfX XX
tcp-check set-varX XX
tcp-check unset-varX XX
tcp-request connection XX 
tcp-request content XXX
tcp-request inspect-delay XXX
tcp-request session XX 
keyworddefaultsfrontendlistenbackend
tcp-response content  XX
tcp-response inspect-delay  XX
timeout checkX XX
timeout clientXXX 
timeout client-finXXX 
timeout connectX XX
timeout http-keep-aliveXXXX
timeout http-requestXXXX
timeout queueX XX
timeout serverX XX
timeout server-finX XX
timeout tarpitXXXX
timeout tunnelX XX
(deprecated)transparentX XX
unique-id-formatXXX 
unique-id-headerXXX 
use_backend XX 
use-fcgi-app  XX
use-server  XX

4.2. Alphabetically sorted keywords reference

This section provides a description of each keyword and its usage.
acl <aclname> <criterion> [flags] [operator] <value> ...
Declare or complete an access list.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
yes
yes
Example:
acl invalid_src  src          0.0.0.0/7 224.0.0.0/3
acl invalid_src  src_port     0:1023
acl local_dst    hdr(host) -i localhost
See section 7 about ACL usage.
backlog <conns>
Give hints to the system about the approximate listen backlog desired size

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments :
<conns>   is the number of pending connections. Depending on the operating
          system, it may represent the number of already acknowledged
          connections, of non-acknowledged ones, or both.
In order to protect against SYN flood attacks, one solution is to increase
the system's SYN backlog size. Depending on the system, sometimes it is just
tunable via a system parameter, sometimes it is not adjustable at all, and
sometimes the system relies on hints given by the application at the time of
the listen() syscall. By default, HAProxy passes the frontend's maxconn value
to the listen() syscall. On systems which can make use of this value, it can
sometimes be useful to be able to specify a different value, hence this
backlog parameter.

On Linux 2.4, the parameter is ignored by the system. On Linux 2.6, it is
used as a hint and the system accepts up to the smallest greater power of
two, and never more than some limits (usually 32768).
balance <algorithm> [ <arguments> ]
balance url_param <param> [check_post]
Define the load balancing algorithm to be used in a backend.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
<algorithm> is the algorithm used to select a server when doing load
            balancing. This only applies when no persistence information
            is available, or when a connection is redispatched to another
            server. <algorithm> may be one of the following :

  roundrobin  Each server is used in turns, according to their weights.
              This is the smoothest and fairest algorithm when the server's
              processing time remains equally distributed. This algorithm
              is dynamic, which means that server weights may be adjusted
              on the fly for slow starts for instance. It is limited by
              design to 4095 active servers per backend. Note that in some
              large farms, when a server becomes up after having been down
              for a very short time, it may sometimes take a few hundreds
              requests for it to be re-integrated into the farm and start
              receiving traffic. This is normal, though very rare. It is
              indicated here in case you would have the chance to observe
              it, so that you don't worry.

  static-rr   Each server is used in turns, according to their weights.
              This algorithm is as similar to roundrobin except that it is
              static, which means that changing a server's weight on the
              fly will have no effect. On the other hand, it has no design
              limitation on the number of servers, and when a server goes
              up, it is always immediately reintroduced into the farm, once
              the full map is recomputed. It also uses slightly less CPU to
              run (around -1%).

  leastconn   The server with the lowest number of connections receives the
              connection. Round-robin is performed within groups of servers
              of the same load to ensure that all servers will be used. Use
              of this algorithm is recommended where very long sessions are
              expected, such as LDAP, SQL, TSE, etc... but is not very well
              suited for protocols using short sessions such as HTTP. This
              algorithm is dynamic, which means that server weights may be
              adjusted on the fly for slow starts for instance. It will
              also consider the number of queued connections in addition to
              the established ones in order to minimize queuing.

  first       The first server with available connection slots receives the
              connection. The servers are chosen from the lowest numeric
              identifier to the highest (see server parameter "id"), which
              defaults to the server's position in the farm. Once a server
              reaches its maxconn value, the next server is used. It does
              not make sense to use this algorithm without setting maxconn.
              The purpose of this algorithm is to always use the smallest
              number of servers so that extra servers can be powered off
              during non-intensive hours. This algorithm ignores the server
              weight, and brings more benefit to long session such as RDP
              or IMAP than HTTP, though it can be useful there too. In
              order to use this algorithm efficiently, it is recommended
              that a cloud controller regularly checks server usage to turn
              them off when unused, and regularly checks backend queue to
              turn new servers on when the queue inflates. Alternatively,
              using "http-check send-state" may inform servers on the load.

  source      The source IP address is hashed and divided by the total
              weight of the running servers to designate which server will
              receive the request. This ensures that the same client IP
              address will always reach the same server as long as no
              server goes down or up. If the hash result changes due to the
              number of running servers changing, many clients will be
              directed to a different server. This algorithm is generally
              used in TCP mode where no cookie may be inserted. It may also
              be used on the Internet to provide a best-effort stickiness
              to clients which refuse session cookies. This algorithm is
              static by default, which means that changing a server's
              weight on the fly will have no effect, but this can be
              changed using "hash-type".

  uri         This algorithm hashes either the left part of the URI (before
              the question mark) or the whole URI (if the "whole" parameter
              is present) and divides the hash value by the total weight of
              the running servers. The result designates which server will
              receive the request. This ensures that the same URI will
              always be directed to the same server as long as no server
              goes up or down. This is used with proxy caches and
              anti-virus proxies in order to maximize the cache hit rate.
              Note that this algorithm may only be used in an HTTP backend.
              This algorithm is static by default, which means that
              changing a server's weight on the fly will have no effect,
              but this can be changed using "hash-type".

              This algorithm supports two optional parameters "len" and
              "depth", both followed by a positive integer number. These
              options may be helpful when it is needed to balance servers
              based on the beginning of the URI only. The "len" parameter
              indicates that the algorithm should only consider that many
              characters at the beginning of the URI to compute the hash.
              Note that having "len" set to 1 rarely makes sense since most
              URIs start with a leading "/".

              The "depth" parameter indicates the maximum directory depth
              to be used to compute the hash. One level is counted for each
              slash in the request. If both parameters are specified, the
              evaluation stops when either is reached.

              A "path-only" parameter indicates that the hashing key starts
              at the first '/' of the path. This can be used to ignore the
              authority part of absolute URIs, and to make sure that HTTP/1
              and HTTP/2 URIs will provide the same hash.

  url_param   The URL parameter specified in argument will be looked up in
              the query string of each HTTP GET request.

              If the modifier "check_post" is used, then an HTTP POST
              request entity will be searched for the parameter argument,
              when it is not found in a query string after a question mark
              ('?') in the URL. The message body will only start to be
              analyzed once either the advertised amount of data has been
              received or the request buffer is full. In the unlikely event
              that chunked encoding is used, only the first chunk is
              scanned. Parameter values separated by a chunk boundary, may
              be randomly balanced if at all. This keyword used to support
              an optional <max_wait> parameter which is now ignored.

              If the parameter is found followed by an equal sign ('=') and
              a value, then the value is hashed and divided by the total
              weight of the running servers. The result designates which
              server will receive the request.

              This is used to track user identifiers in requests and ensure
              that a same user ID will always be sent to the same server as
              long as no server goes up or down. If no value is found or if
              the parameter is not found, then a round robin algorithm is
              applied. Note that this algorithm may only be used in an HTTP
              backend. This algorithm is static by default, which means
              that changing a server's weight on the fly will have no
              effect, but this can be changed using "hash-type".

  hdr(<name>) The HTTP header <name> will be looked up in each HTTP
              request. Just as with the equivalent ACL 'hdr()' function,
              the header name in parenthesis is not case sensitive. If the
              header is absent or if it does not contain any value, the
              roundrobin algorithm is applied instead.

              An optional 'use_domain_only' parameter is available, for
              reducing the hash algorithm to the main domain part with some
              specific headers such as 'Host'. For instance, in the Host
              value "haproxy.1wt.eu", only "1wt" will be considered.

              This algorithm is static by default, which means that
              changing a server's weight on the fly will have no effect,
              but this can be changed using "hash-type".

  random
  random(<draws>)
              A random number will be used as the key for the consistent
              hashing function. This means that the servers' weights are
              respected, dynamic weight changes immediately take effect, as
              well as new server additions. Random load balancing can be
              useful with large farms or when servers are frequently added
              or removed as it may avoid the hammering effect that could
              result from roundrobin or leastconn in this situation. The
              hash-balance-factor directive can be used to further improve
              fairness of the load balancing, especially in situations
              where servers show highly variable response times. When an
              argument <draws> is present, it must be an integer value one
              or greater, indicating the number of draws before selecting
              the least loaded of these servers. It was indeed demonstrated
              that picking the least loaded of two servers is enough to
              significantly improve the fairness of the algorithm, by
              always avoiding to pick the most loaded server within a farm
              and getting rid of any bias that could be induced by the
              unfair distribution of the consistent list. Higher values N
              will take away N-1 of the highest loaded servers at the
              expense of performance. With very high values, the algorithm
              will converge towards the leastconn's result but much slower.
              The default value is 2, which generally shows very good
              distribution and performance. This algorithm is also known as
              the Power of Two Random Choices and is described here :
              http://www.eecs.harvard.edu/~michaelm/postscripts/handbook2001.pdf

  rdp-cookie
  rdp-cookie(<name>)
              The RDP cookie <name> (or "mstshash" if omitted) will be
              looked up and hashed for each incoming TCP request. Just as
              with the equivalent ACL 'req.rdp_cookie()' function, the name
              is not case-sensitive. This mechanism is useful as a degraded
              persistence mode, as it makes it possible to always send the
              same user (or the same session ID) to the same server. If the
              cookie is not found, the normal roundrobin algorithm is
              used instead.

              Note that for this to work, the frontend must ensure that an
              RDP cookie is already present in the request buffer. For this
              you must use 'tcp-request content accept' rule combined with
              a 'req.rdp_cookie_cnt' ACL.

              This algorithm is static by default, which means that
              changing a server's weight on the fly will have no effect,
              but this can be changed using "hash-type".

<arguments> is an optional list of arguments which may be needed by some
            algorithms. Right now, only "url_param" and "uri" support an
            optional argument.
The load balancing algorithm of a backend is set to roundrobin when no other
algorithm, mode nor option have been set. The algorithm may only be set once
for each backend.

With authentication schemes that require the same connection like NTLM, URI
based algorithms must not be used, as they would cause subsequent requests
to be routed to different backend servers, breaking the invalid assumptions
NTLM relies on.
Examples :
balance roundrobin
balance url_param userid
balance url_param session_id check_post 64
balance hdr(User-Agent)
balance hdr(host)
balance hdr(Host) use_domain_only
Note: the following caveats and limitations on using the "check_post"
extension with "url_param" must be considered :

  - all POST requests are eligible for consideration, because there is no way
    to determine if the parameters will be found in the body or entity which
    may contain binary data. Therefore another method may be required to
    restrict consideration of POST requests that have no URL parameters in
    the body. (see acl http_end)

  - using a <max_wait> value larger than the request buffer size does not
    make sense and is useless. The buffer size is set at build time, and
    defaults to 16 kB.

  - Content-Encoding is not supported, the parameter search will probably
    fail; and load balancing will fall back to Round Robin.

  - Expect: 100-continue is not supported, load balancing will fall back to
    Round Robin.

  - Transfer-Encoding (RFC7230 3.3.1) is only supported in the first chunk.
    If the entire parameter value is not present in the first chunk, the
    selection of server is undefined (actually, defined by how little
    actually appeared in the first chunk).

  - This feature does not support generation of a 100, 411 or 501 response.

  - In some cases, requesting "check_post" MAY attempt to scan the entire
    contents of a message body. Scanning normally terminates when linear
    white space or control characters are found, indicating the end of what
    might be a URL parameter list. This is probably not a concern with SGML
    type message bodies.
bind [<address>]:<port_range> [, ...] [param*]
bind /<path> [, ...] [param*]
Define one or several listening addresses and/or ports in a frontend.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
no
no
Arguments :
<address>     is optional and can be a host name, an IPv4 address, an IPv6
              address, or '*'. It designates the address the frontend will
              listen on. If unset, all IPv4 addresses of the system will be
              listened on. The same will apply for '*' or the system's
              special address "0.0.0.0". The IPv6 equivalent is '::'.
              Optionally, an address family prefix may be used before the
              address to force the family regardless of the address format,
              which can be useful to specify a path to a unix socket with
              no slash ('/'). Currently supported prefixes are :
                - 'ipv4@'  -> address is always IPv4
                - 'ipv6@'  -> address is always IPv6
                - 'udp@'   -> address is resolved as IPv4 or IPv6 and
                  protocol UDP is used. Currently those listeners are
                  supported only in log-forward sections.
                - 'udp4@'  -> address is always IPv4 and protocol UDP
                  is used. Currently those listeners are supported
                  only in log-forward sections.
                - 'udp6@'  -> address is always IPv6 and protocol UDP
                  is used. Currently those listeners are supported
                  only in log-forward sections.
                - 'unix@'  -> address is a path to a local unix socket
                - 'abns@'  -> address is in abstract namespace (Linux only).
                  Note: since abstract sockets are not "rebindable", they
                        do not cope well with multi-process mode during
                        soft-restart, so it is better to avoid them if
                        nbproc is greater than 1. The effect is that if the
                        new process fails to start, only one of the old ones
                        will be able to rebind to the socket.
                - 'fd@<n>' -> use file descriptor <n> inherited from the
                  parent. The fd must be bound and may or may not already
                  be listening.
                - 'sockpair@<n>'-> like fd@ but you must use the fd of a
                  connected unix socket or of a socketpair. The bind waits
                  to receive a FD over the unix socket and uses it as if it
                  was the FD of an accept(). Should be used carefully.
              You may want to reference some environment variables in the
              address parameter, see section 2.3 about environment
              variables.

<port_range>  is either a unique TCP port, or a port range for which the
              proxy will accept connections for the IP address specified
              above. The port is mandatory for TCP listeners. Note that in
              the case of an IPv6 address, the port is always the number
              after the last colon (':'). A range can either be :
               - a numerical port (ex: '80')
               - a dash-delimited ports range explicitly stating the lower
                 and upper bounds (ex: '2000-2100') which are included in
                 the range.

              Particular care must be taken against port ranges, because
              every <address:port> couple consumes one socket (= a file
              descriptor), so it's easy to consume lots of descriptors
              with a simple range, and to run out of sockets. Also, each
              <address:port> couple must be used only once among all
              instances running on a same system. Please note that binding
              to ports lower than 1024 generally require particular
              privileges to start the program, which are independent of
              the 'uid' parameter.

<path>        is a UNIX socket path beginning with a slash ('/'). This is
              alternative to the TCP listening port. HAProxy will then
              receive UNIX connections on the socket located at this place.
              The path must begin with a slash and by default is absolute.
              It can be relative to the prefix defined by "unix-bind" in
              the global section. Note that the total length of the prefix
              followed by the socket path cannot exceed some system limits
              for UNIX sockets, which commonly are set to 107 characters.

<param*>      is a list of parameters common to all sockets declared on the
              same line. These numerous parameters depend on OS and build
              options and have a complete section dedicated to them. Please
              refer to section 5 to for more details.
It is possible to specify a list of address:port combinations delimited by
commas. The frontend will then listen on all of these addresses. There is no
fixed limit to the number of addresses and ports which can be listened on in
a frontend, as well as there is no limit to the number of "bind" statements
in a frontend.
Example :
listen http_proxy
    bind :80,:443
    bind 10.0.0.1:10080,10.0.0.1:10443
    bind /var/run/ssl-frontend.sock user root mode 600 accept-proxy

listen http_https_proxy
    bind :80
    bind :443 ssl crt /etc/haproxy/site.pem

listen http_https_proxy_explicit
    bind ipv6@:80
    bind ipv4@public_ssl:443 ssl crt /etc/haproxy/site.pem
    bind unix@ssl-frontend.sock user root mode 600 accept-proxy

listen external_bind_app1
    bind "fd@${FD_APP1}"
Note: regarding Linux's abstract namespace sockets, HAProxy uses the whole
      sun_path length is used for the address length. Some other programs
      such as socat use the string length only by default. Pass the option
      ",unix-tightsocklen=0" to any abstract socket definition in socat to
      make it compatible with HAProxy's.
bind-process [ all | odd | even | <process_num>[-[<process_num>]] ] ...
Limit visibility of an instance to a certain set of processes numbers.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
all           All process will see this instance. This is the default. It
              may be used to override a default value.

odd           This instance will be enabled on processes 1,3,5,...63. This
              option may be combined with other numbers.

even          This instance will be enabled on processes 2,4,6,...64. This
              option may be combined with other numbers. Do not use it
              with less than 2 processes otherwise some instances might be
              missing from all processes.

process_num   The instance will be enabled on this process number or range,
              whose values must all be between 1 and 32 or 64 depending on
              the machine's word size. Ranges can be partially defined. The
              higher bound can be omitted. In such case, it is replaced by
              the corresponding maximum value. If a proxy is bound to
              process numbers greater than the configured global.nbproc, it
              will either be forced to process #1 if a single process was
              specified, or to all processes otherwise.
This keyword limits binding of certain instances to certain processes. This
is useful in order not to have too many processes listening to the same
ports. For instance, on a dual-core machine, it might make sense to set
'nbproc 2' in the global section, then distributes the listeners among 'odd'
and 'even' instances.

At the moment, it is not possible to reference more than 32 or 64 processes
using this keyword, but this should be more than enough for most setups.
Please note that 'all' really means all processes regardless of the machine's
word size, and is not limited to the first 32 or 64.

Each "bind" line may further be limited to a subset of the proxy's processes,
please consult the "process" bind keyword in section 5.1.

When a frontend has no explicit "bind-process" line, it tries to bind to all
the processes referenced by its "bind" lines. That means that frontends can
easily adapt to their listeners' processes.

If some backends are referenced by frontends bound to other processes, the
backend automatically inherits the frontend's processes.
Example :
listen app_ip1
    bind 10.0.0.1:80
    bind-process odd

listen app_ip2
    bind 10.0.0.2:80
    bind-process even

listen management
    bind 10.0.0.3:80
    bind-process 1 2 3 4

listen management
    bind 10.0.0.4:80
    bind-process 1-4
capture cookie <name> len <length>
Capture and log a cookie in the request and in the response.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
no
no
Arguments :
<name>    is the beginning of the name of the cookie to capture. In order
          to match the exact name, simply suffix the name with an equal
          sign ('='). The full name will appear in the logs, which is
          useful with application servers which adjust both the cookie name
          and value (e.g. ASPSESSIONXXX).

<length>  is the maximum number of characters to report in the logs, which
          include the cookie name, the equal sign and the value, all in the
          standard "name=value" form. The string will be truncated on the
          right if it exceeds <length>.
Only the first cookie is captured. Both the "cookie" request headers and the
"set-cookie" response headers are monitored. This is particularly useful to
check for application bugs causing session crossing or stealing between
users, because generally the user's cookies can only change on a login page.

When the cookie was not presented by the client, the associated log column
will report "-". When a request does not cause a cookie to be assigned by the
server, a "-" is reported in the response column.

The capture is performed in the frontend only because it is necessary that
the log format does not change for a given frontend depending on the
backends. This may change in the future. Note that there can be only one
"capture cookie" statement in a frontend. The maximum capture length is set
by the global "tune.http.cookielen" setting and defaults to 63 characters. It
is not possible to specify a capture in a "defaults" section.
Example:
capture cookie ASPSESSION len 32
capture request header <name> len <length>
Capture and log the last occurrence of the specified request header.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
no
no
Arguments :
<name>    is the name of the header to capture. The header names are not
          case-sensitive, but it is a common practice to write them as they
          appear in the requests, with the first letter of each word in
          upper case. The header name will not appear in the logs, only the
          value is reported, but the position in the logs is respected.

<length>  is the maximum number of characters to extract from the value and
          report in the logs. The string will be truncated on the right if
          it exceeds <length>.
The complete value of the last occurrence of the header is captured. The
value will be added to the logs between braces ('{}'). If multiple headers
are captured, they will be delimited by a vertical bar ('|') and will appear
in the same order they were declared in the configuration. Non-existent
headers will be logged just as an empty string. Common uses for request
header captures include the "Host" field in virtual hosting environments, the
"Content-length" when uploads are supported, "User-agent" to quickly
differentiate between real users and robots, and "X-Forwarded-For" in proxied
environments to find where the request came from.

Note that when capturing headers such as "User-agent", some spaces may be
logged, making the log analysis more difficult. Thus be careful about what
you log if you know your log parser is not smart enough to rely on the
braces.

There is no limit to the number of captured request headers nor to their
length, though it is wise to keep them low to limit memory usage per session.
In order to keep log format consistent for a same frontend, header captures
can only be declared in a frontend. It is not possible to specify a capture
in a "defaults" section.
Example:
capture request header Host len 15
capture request header X-Forwarded-For len 15
capture request header Referer len 15
capture response header <name> len <length>
Capture and log the last occurrence of the specified response header.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
no
no
Arguments :
<name>    is the name of the header to capture. The header names are not
          case-sensitive, but it is a common practice to write them as they
          appear in the response, with the first letter of each word in
          upper case. The header name will not appear in the logs, only the
          value is reported, but the position in the logs is respected.

<length>  is the maximum number of characters to extract from the value and
          report in the logs. The string will be truncated on the right if
          it exceeds <length>.
The complete value of the last occurrence of the header is captured. The
result will be added to the logs between braces ('{}') after the captured
request headers. If multiple headers are captured, they will be delimited by
a vertical bar ('|') and will appear in the same order they were declared in
the configuration. Non-existent headers will be logged just as an empty
string. Common uses for response header captures include the "Content-length"
header which indicates how many bytes are expected to be returned, the
"Location" header to track redirections.

There is no limit to the number of captured response headers nor to their
length, though it is wise to keep them low to limit memory usage per session.
In order to keep log format consistent for a same frontend, header captures
can only be declared in a frontend. It is not possible to specify a capture
in a "defaults" section.
Example:
capture response header Content-length len 9
capture response header Location len 15
clitcpka-cnt <count>
Sets the maximum number of keepalive probes TCP should send before dropping
the connection on the client side.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments :
<count>   is the maximum number of keepalive probes.
This keyword corresponds to the socket option TCP_KEEPCNT. If this keyword
is not specified, system-wide TCP parameter (tcp_keepalive_probes) is used.
The availability of this setting depends on the operating system. It is
known to work on Linux.
clitcpka-idle <timeout>
Sets the time the connection needs to remain idle before TCP starts sending
keepalive probes, if enabled the sending of TCP keepalive packets on the
client side.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments :
<timeout> is the time the connection needs to remain idle before TCP starts
          sending keepalive probes. It is specified in seconds by default,
          but can be in any other unit if the number is suffixed by the
          unit, as explained at the top of this document.
This keyword corresponds to the socket option TCP_KEEPIDLE. If this keyword
is not specified, system-wide TCP parameter (tcp_keepalive_time) is used.
The availability of this setting depends on the operating system. It is
known to work on Linux.
clitcpka-intvl <timeout>
Sets the time between individual keepalive probes on the client side.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments :
<timeout> is the time between individual keepalive probes. It is specified
          in seconds by default, but can be in any other unit if the number
          is suffixed by the unit, as explained at the top of this
          document.
This keyword corresponds to the socket option TCP_KEEPINTVL. If this keyword
is not specified, system-wide TCP parameter (tcp_keepalive_intvl) is used.
The availability of this setting depends on the operating system. It is
known to work on Linux.
compression algo <algorithm> ...
compression type <mime type> ...
Enable HTTP compression.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
algo     is followed by the list of supported compression algorithms.
type     is followed by the list of MIME types that will be compressed.
offload  makes HAProxy work as a compression offloader only (see notes).
The currently supported algorithms are :
  identity     this is mostly for debugging, and it was useful for developing
               the compression feature. Identity does not apply any change on
               data.

  gzip         applies gzip compression. This setting is only available when
               support for zlib or libslz was built in.

  deflate      same as "gzip", but with deflate algorithm and zlib format.
               Note that this algorithm has ambiguous support on many
               browsers and no support at all from recent ones. It is
               strongly recommended not to use it for anything else than
               experimentation. This setting is only available when support
               for zlib or libslz was built in.

  raw-deflate  same as "deflate" without the zlib wrapper, and used as an
               alternative when the browser wants "deflate". All major
               browsers understand it and despite violating the standards,
               it is known to work better than "deflate", at least on MSIE
               and some versions of Safari. Do not use it in conjunction
               with "deflate", use either one or the other since both react
               to the same Accept-Encoding token. This setting is only
               available when support for zlib or libslz was built in.

Compression will be activated depending on the Accept-Encoding request
header. With identity, it does not take care of that header.
If backend servers support HTTP compression, these directives
will be no-op: HAProxy will see the compressed response and will not
compress again. If backend servers do not support HTTP compression and
there is Accept-Encoding header in request, HAProxy will compress the
matching response.

The "offload" setting makes HAProxy remove the Accept-Encoding header to
prevent backend servers from compressing responses. It is strongly
recommended not to do this because this means that all the compression work
will be done on the single point where HAProxy is located. However in some
deployment scenarios, HAProxy may be installed in front of a buggy gateway
with broken HTTP compression implementation which can't be turned off.
In that case HAProxy can be used to prevent that gateway from emitting
invalid payloads. In this case, simply removing the header in the
configuration does not work because it applies before the header is parsed,
so that prevents HAProxy from compressing. The "offload" setting should
then be used for such scenarios. Note: for now, the "offload" setting is
ignored when set in a defaults section.

Compression is disabled when:
  * the request does not advertise a supported compression algorithm in the
    "Accept-Encoding" header
  * the response message is not HTTP/1.1 or above
  * HTTP status code is not one of 200, 201, 202, or 203
  * response contain neither a "Content-Length" header nor a
    "Transfer-Encoding" whose last value is "chunked"
  * response contains a "Content-Type" header whose first value starts with
    "multipart"
  * the response contains the "no-transform" value in the "Cache-control"
    header
  * User-Agent matches "Mozilla/4" unless it is MSIE 6 with XP SP2, or MSIE 7
    and later
  * The response contains a "Content-Encoding" header, indicating that the
    response is already compressed (see compression offload)
  * The response contains an invalid "ETag" header or multiple ETag headers

Note: The compression does not emit the Warning header.
Examples :
compression algo gzip
compression type text/html text/plain
cookie <name> [ rewrite | insert | prefix ] [ indirect ] [ nocache ] [ postonly ] [ preserve ] [ httponly ] [ secure ] [ domain <domain> ]* [ maxidle <idle> ] [ maxlife <life> ] [ dynamic ] [ attr <value> ]*
Enable cookie-based persistence in a backend.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
<name>    is the name of the cookie which will be monitored, modified or
          inserted in order to bring persistence. This cookie is sent to
          the client via a "Set-Cookie" header in the response, and is
          brought back by the client in a "Cookie" header in all requests.
          Special care should be taken to choose a name which does not
          conflict with any likely application cookie. Also, if the same
          backends are subject to be used by the same clients (e.g.
          HTTP/HTTPS), care should be taken to use different cookie names
          between all backends if persistence between them is not desired.

rewrite   This keyword indicates that the cookie will be provided by the
          server and that HAProxy will have to modify its value to set the
          server's identifier in it. This mode is handy when the management
          of complex combinations of "Set-cookie" and "Cache-control"
          headers is left to the application. The application can then
          decide whether or not it is appropriate to emit a persistence
          cookie. Since all responses should be monitored, this mode
          doesn't work in HTTP tunnel mode. Unless the application
          behavior is very complex and/or broken, it is advised not to
          start with this mode for new deployments. This keyword is
          incompatible with "insert" and "prefix".

insert    This keyword indicates that the persistence cookie will have to
          be inserted by HAProxy in server responses if the client did not

          already have a cookie that would have permitted it to access this
          server. When used without the "preserve" option, if the server
          emits a cookie with the same name, it will be removed before
          processing. For this reason, this mode can be used to upgrade
          existing configurations running in the "rewrite" mode. The cookie
          will only be a session cookie and will not be stored on the
          client's disk. By default, unless the "indirect" option is added,
          the server will see the cookies emitted by the client. Due to
          caching effects, it is generally wise to add the "nocache" or
          "postonly" keywords (see below). The "insert" keyword is not
          compatible with "rewrite" and "prefix".

prefix    This keyword indicates that instead of relying on a dedicated
          cookie for the persistence, an existing one will be completed.
          This may be needed in some specific environments where the client
          does not support more than one single cookie and the application
          already needs it. In this case, whenever the server sets a cookie
          named <name>, it will be prefixed with the server's identifier
          and a delimiter. The prefix will be removed from all client
          requests so that the server still finds the cookie it emitted.
          Since all requests and responses are subject to being modified,
          this mode doesn't work with tunnel mode. The "prefix" keyword is
          not compatible with "rewrite" and "insert". Note: it is highly
          recommended not to use "indirect" with "prefix", otherwise server
          cookie updates would not be sent to clients.

indirect  When this option is specified, no cookie will be emitted to a
          client which already has a valid one for the server which has
          processed the request. If the server sets such a cookie itself,
          it will be removed, unless the "preserve" option is also set. In
          "insert" mode, this will additionally remove cookies from the
          requests transmitted to the server, making the persistence
          mechanism totally transparent from an application point of view.
          Note: it is highly recommended not to use "indirect" with
          "prefix", otherwise server cookie updates would not be sent to
          clients.

nocache   This option is recommended in conjunction with the insert mode
          when there is a cache between the client and HAProxy, as it
          ensures that a cacheable response will be tagged non-cacheable if
          a cookie needs to be inserted. This is important because if all
          persistence cookies are added on a cacheable home page for
          instance, then all customers will then fetch the page from an
          outer cache and will all share the same persistence cookie,
          leading to one server receiving much more traffic than others.
          See also the "insert" and "postonly" options.

postonly  This option ensures that cookie insertion will only be performed
          on responses to POST requests. It is an alternative to the
          "nocache" option, because POST responses are not cacheable, so
          this ensures that the persistence cookie will never get cached.
          Since most sites do not need any sort of persistence before the
          first POST which generally is a login request, this is a very
          efficient method to optimize caching without risking to find a
          persistence cookie in the cache.
          See also the "insert" and "nocache" options.

preserve  This option may only be used with "insert" and/or "indirect". It
          allows the server to emit the persistence cookie itself. In this
          case, if a cookie is found in the response, HAProxy will leave it
          untouched. This is useful in order to end persistence after a
          logout request for instance. For this, the server just has to
          emit a cookie with an invalid value (e.g. empty) or with a date in
          the past. By combining this mechanism with the "disable-on-404"
          check option, it is possible to perform a completely graceful
          shutdown because users will definitely leave the server after
          they logout.

httponly  This option tells HAProxy to add an "HttpOnly" cookie attribute
          when a cookie is inserted. This attribute is used so that a
          user agent doesn't share the cookie with non-HTTP components.
          Please check RFC6265 for more information on this attribute.

secure    This option tells HAProxy to add a "Secure" cookie attribute when
          a cookie is inserted. This attribute is used so that a user agent
          never emits this cookie over non-secure channels, which means
          that a cookie learned with this flag will be presented only over
          SSL/TLS connections. Please check RFC6265 for more information on
          this attribute.

domain    This option allows to specify the domain at which a cookie is
          inserted. It requires exactly one parameter: a valid domain
          name. If the domain begins with a dot, the browser is allowed to
          use it for any host ending with that name. It is also possible to
          specify several domain names by invoking this option multiple
          times. Some browsers might have small limits on the number of
          domains, so be careful when doing that. For the record, sending
          10 domains to MSIE 6 or Firefox 2 works as expected.

maxidle   This option allows inserted cookies to be ignored after some idle
          time. It only works with insert-mode cookies. When a cookie is
          sent to the client, the date this cookie was emitted is sent too.
          Upon further presentations of this cookie, if the date is older
          than the delay indicated by the parameter (in seconds), it will
          be ignored. Otherwise, it will be refreshed if needed when the
          response is sent to the client. This is particularly useful to
          prevent users who never close their browsers from remaining for
          too long on the same server (e.g. after a farm size change). When
          this option is set and a cookie has no date, it is always
          accepted, but gets refreshed in the response. This maintains the
          ability for admins to access their sites. Cookies that have a
          date in the future further than 24 hours are ignored. Doing so
          lets admins fix timezone issues without risking kicking users off
          the site.

maxlife   This option allows inserted cookies to be ignored after some life
          time, whether they're in use or not. It only works with insert
          mode cookies. When a cookie is first sent to the client, the date
          this cookie was emitted is sent too. Upon further presentations
          of this cookie, if the date is older than the delay indicated by
          the parameter (in seconds), it will be ignored. If the cookie in
          the request has no date, it is accepted and a date will be set.
          Cookies that have a date in the future further than 24 hours are
          ignored. Doing so lets admins fix timezone issues without risking
          kicking users off the site. Contrary to maxidle, this value is
          not refreshed, only the first visit date counts. Both maxidle and
          maxlife may be used at the time. This is particularly useful to
          prevent users who never close their browsers from remaining for
          too long on the same server (e.g. after a farm size change). This
          is stronger than the maxidle method in that it forces a
          redispatch after some absolute delay.

dynamic   Activate dynamic cookies. When used, a session cookie is
          dynamically created for each server, based on the IP and port
          of the server, and a secret key, specified in the
          "dynamic-cookie-key" backend directive.
          The cookie will be regenerated each time the IP address change,
          and is only generated for IPv4/IPv6.

attr      This option tells HAProxy to add an extra attribute when a
          cookie is inserted. The attribute value can contain any
          characters except control ones or ";". This option may be
          repeated.
There can be only one persistence cookie per HTTP backend, and it can be
declared in a defaults section. The value of the cookie will be the value
indicated after the "cookie" keyword in a "server" statement. If no cookie
is declared for a given server, the cookie is not set.
Examples :
cookie JSESSIONID prefix
cookie SRV insert indirect nocache
cookie SRV insert postonly indirect
cookie SRV insert indirect nocache maxidle 30m maxlife 8h
declare capture [ request | response ] len <length>
Declares a capture slot.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
no
no
Arguments:
<length> is the length allowed for the capture.
This declaration is only available in the frontend or listen section, but the
reserved slot can be used in the backends. The "request" keyword allocates a
capture slot for use in the request, and "response" allocates a capture slot
for use in the response.
Change default options for a server in a backend

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments:
<param*>  is a list of parameters for this server. The "default-server"
          keyword accepts an important number of options and has a complete
          section dedicated to it. Please refer to section 5 for more
          details.
Example :
default-server inter 1000 weight 13
default_backend <backend>
Specify the backend to use when no "use_backend" rule has been matched.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments :
<backend> is the name of the backend to use.
When doing content-switching between frontend and backends using the
"use_backend" keyword, it is often useful to indicate which backend will be
used when no rule has matched. It generally is the dynamic backend which
will catch all undetermined requests.
Example :
use_backend     dynamic  if  url_dyn
use_backend     static   if  url_css url_img extension_img
default_backend dynamic
description <string>
Describe a listen, frontend or backend.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
yes
yes
Arguments : string
Allows to add a sentence to describe the related object in the HAProxy HTML
stats page. The description will be printed on the right of the object name
it describes.
No need to backslash spaces in the <string> arguments.
Disable a proxy, frontend or backend.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments : none
The "disabled" keyword is used to disable an instance, mainly in order to
liberate a listening port or to temporarily disable a service. The instance
will still be created and its configuration will be checked, but it will be
created in the "stopped" state and will appear as such in the statistics. It
will not receive any traffic nor will it send any health-checks or logs. It
is possible to disable many instances at once by adding the "disabled"
keyword in a "defaults" section.
dispatch <address>:<port>
Set a default server address

May be used in sections :

defaultsfrontendlistenbackend
no
no
no
no
yes
yes
yes
yes
Arguments :
<address> is the IPv4 address of the default server. Alternatively, a
          resolvable hostname is supported, but this name will be resolved
          during start-up.

<ports>   is a mandatory port specification. All connections will be sent
          to this port, and it is not permitted to use port offsets as is
          possible with normal servers.
The "dispatch" keyword designates a default server for use when no other
server can take the connection. In the past it was used to forward non
persistent connections to an auxiliary load balancer. Due to its simple
syntax, it has also been used for simple TCP relays. It is recommended not to
use it for more clarity, and to use the "server" directive instead.
Set the dynamic cookie secret key for a backend.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments : The secret key to be used.
When dynamic cookies are enabled (see the "dynamic" directive for cookie),
a dynamic cookie is created for each server (unless one is explicitly
specified on the "server" line), using a hash of the IP address of the
server, the TCP port, and the secret key.
That way, we can ensure session persistence across multiple load-balancers,
even if servers are dynamically added or removed.
Enable a proxy, frontend or backend.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments : none
The "enabled" keyword is used to explicitly enable an instance, when the
defaults has been set to "disabled". This is very rarely used.
errorfile <code> <file>
Return a file contents instead of errors generated by HAProxy

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<code>    is the HTTP status code. Currently, HAProxy is capable of
          generating codes 200, 400, 401, 403, 404, 405, 407, 408, 410,
          413, 425, 429, 500, 501, 502, 503, and 504.

<file>    designates a file containing the full HTTP response. It is
          recommended to follow the common practice of appending ".http" to
          the filename so that people do not confuse the response with HTML
          error pages, and to use absolute paths, since files are read
          before any chroot is performed.
It is important to understand that this keyword is not meant to rewrite
errors returned by the server, but errors detected and returned by HAProxy.
This is why the list of supported errors is limited to a small set.

Code 200 is emitted in response to requests matching a "monitor-uri" rule.

The files are parsed when HAProxy starts and must be valid according to the
HTTP specification. They should not exceed the configured buffer size
(BUFSIZE), which generally is 16 kB, otherwise an internal error will be
returned. It is also wise not to put any reference to local contents
(e.g. images) in order to avoid loops between the client and HAProxy when all
servers are down, causing an error to be returned instead of an
image. Finally, The response cannot exceed (tune.bufsize - tune.maxrewrite)
so that "http-after-response" rules still have room to operate (see
"tune.maxrewrite").

The files are read at the same time as the configuration and kept in memory.
For this reason, the errors continue to be returned even when the process is
chrooted, and no file change is considered while the process is running. A
simple method for developing those files consists in associating them to the
403 status code and interrogating a blocked URL.
Example :
errorfile 400 /etc/haproxy/errorfiles/400badreq.http
errorfile 408 /dev/null  # work around Chrome pre-connect bug
errorfile 403 /etc/haproxy/errorfiles/403forbid.http
errorfile 503 /etc/haproxy/errorfiles/503sorry.http
errorfiles <name> [<code> ...]
Import, fully or partially, the error files defined in the <name> http-errors
section.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<name>  is the name of an existing http-errors section.

<code>  is a HTTP status code. Several status code may be listed.
        Currently, HAProxy is capable of generating codes 200, 400, 401,
        403, 404, 405, 407, 408, 410, 413, 425, 429, 500, 501, 502, 503,
        and 504.
Errors defined in the http-errors section with the name <name> are imported
in the current proxy. If no status code is specified, all error files of the
http-errors section are imported. Otherwise, only error files associated to
the listed status code are imported. Those error files override the already
defined custom errors for the proxy. And they may be overridden by following
ones. Functionally, it is exactly the same as declaring all error files by
hand using "errorfile" directives.
Example :
errorfiles generic
errorfiles site-1 403 404
errorloc <code> <url>
errorloc302 <code> <url>
Return an HTTP redirection to a URL instead of errors generated by HAProxy

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<code>    is the HTTP status code. Currently, HAProxy is capable of
          generating codes 200, 400, 401, 403, 404, 405, 407, 408, 410,
          413, 425, 429, 500, 501, 502, 503, and 504.

<url>     it is the exact contents of the "Location" header. It may contain
          either a relative URI to an error page hosted on the same site,
          or an absolute URI designating an error page on another site.
          Special care should be given to relative URIs to avoid redirect
          loops if the URI itself may generate the same error (e.g. 500).
It is important to understand that this keyword is not meant to rewrite
errors returned by the server, but errors detected and returned by HAProxy.
This is why the list of supported errors is limited to a small set.

Code 200 is emitted in response to requests matching a "monitor-uri" rule.

Note that both keyword return the HTTP 302 status code, which tells the
client to fetch the designated URL using the same HTTP method. This can be
quite problematic in case of non-GET methods such as POST, because the URL
sent to the client might not be allowed for something other than GET. To
work around this problem, please use "errorloc303" which send the HTTP 303
status code, indicating to the client that the URL must be fetched with a GET
request.
errorloc303 <code> <url>
Return an HTTP redirection to a URL instead of errors generated by HAProxy

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<code>    is the HTTP status code. Currently, HAProxy is capable of
          generating codes 200, 400, 401, 403, 404, 405, 407, 408, 410,
          413, 425, 429, 500, 501, 502, 503, and 504.

<url>     it is the exact contents of the "Location" header. It may contain
          either a relative URI to an error page hosted on the same site,
          or an absolute URI designating an error page on another site.
          Special care should be given to relative URIs to avoid redirect
          loops if the URI itself may generate the same error (e.g. 500).
It is important to understand that this keyword is not meant to rewrite
errors returned by the server, but errors detected and returned by HAProxy.
This is why the list of supported errors is limited to a small set.

Code 200 is emitted in response to requests matching a "monitor-uri" rule.

Note that both keyword return the HTTP 303 status code, which tells the
client to fetch the designated URL using the same HTTP GET method. This
solves the usual problems associated with "errorloc" and the 302 code. It is
possible that some very old browsers designed before HTTP/1.1 do not support
it, but no such problem has been reported till now.
email-alert from <emailaddr>
Declare the from email address to be used in both the envelope and header
of email alerts. This is the address that email alerts are sent from.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<emailaddr> is the from email address to use when sending email alerts
Also requires "email-alert mailers" and "email-alert to" to be set
and if so sending email alerts is enabled for the proxy.
Declare the maximum log level of messages for which email alerts will be
sent. This acts as a filter on the sending of email alerts.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<level> One of the 8 syslog levels:
          emerg alert crit err warning notice info  debug
        The above syslog levels are ordered from lowest to highest.
By default level is alert

Also requires "email-alert from", "email-alert mailers" and
"email-alert to" to be set and if so sending email alerts is enabled
for the proxy.

Alerts are sent when :

* An un-paused server is marked as down and <level> is alert or lower
* A paused server is marked as down and <level> is notice or lower
* A server is marked as up or enters the drain state and <level>
  is notice or lower
* "option log-health-checks" is enabled, <level> is info or lower,
   and a health check status update occurs
email-alert mailers <mailersect>
Declare the mailers to be used when sending email alerts

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<mailersect> is the name of the mailers section to send email alerts.
Also requires "email-alert from" and "email-alert to" to be set
and if so sending email alerts is enabled for the proxy.
Declare the to hostname address to be used when communicating with
mailers.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<hostname> is the hostname to use when communicating with mailers
By default the systems hostname is used.

Also requires "email-alert from", "email-alert mailers" and
"email-alert to" to be set and if so sending email alerts is enabled
for the proxy.
email-alert to <emailaddr>
Declare both the recipient address in the envelope and to address in the
header of email alerts. This is the address that email alerts are sent to.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<emailaddr> is the to email address to use when sending email alerts
Also requires "email-alert mailers" and "email-alert to" to be set
and if so sending email alerts is enabled for the proxy.
force-persist { if | unless } <condition>
Declare a condition to force persistence on down servers

May be used in sections :

defaultsfrontendlistenbackend
no
no
no
no
yes
yes
yes
yes
By default, requests are not dispatched to down servers. It is possible to
force this using "option persist", but it is unconditional and redispatches
to a valid server if "option redispatch" is set. That leaves with very little
possibilities to force some requests to reach a server which is artificially
marked down for maintenance operations.

The "force-persist" statement allows one to declare various ACL-based
conditions which, when met, will cause a request to ignore the down status of
a server and still try to connect to it. That makes it possible to start a
server, still replying an error to the health checks, and run a specially
configured browser to test the service. Among the handy methods, one could
use a specific source IP address, or a specific cookie. The cookie also has
the advantage that it can easily be added/removed on the browser from a test
page. Once the service is validated, it is then possible to open the service
to the world by returning a valid response to health checks.

The forced persistence is enabled when an "if" condition is met, or unless an
"unless" condition is met. The final redispatch is always disabled when this
is used.
filter <name> [param*]
Add the filter <name> in the filter list attached to the proxy.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
yes
yes
Arguments :
<name>     is the name of the filter. Officially supported filters are
           referenced in section 9.

<param*>   is a list of parameters accepted by the filter <name>. The
           parsing of these parameters are the responsibility of the
           filter. Please refer to the documentation of the corresponding
           filter (section 9) for all details on the supported parameters.
Multiple occurrences of the filter line can be used for the same proxy. The
same filter can be referenced many times if needed.
Example:
listen
  bind *:80

  filter trace name BEFORE-HTTP-COMP
  filter compression
  filter trace name AFTER-HTTP-COMP

  compression algo gzip
  compression offload

  server srv1 192.168.0.1:80
fullconn <conns>
Specify at what backend load the servers will reach their maxconn

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
<conns>   is the number of connections on the backend which will make the
          servers use the maximal number of connections.
When a server has a "maxconn" parameter specified, it means that its number
of concurrent connections will never go higher. Additionally, if it has a
"minconn" parameter, it indicates a dynamic limit following the backend's
load. The server will then always accept at least <minconn> connections,
never more than <maxconn>, and the limit will be on the ramp between both
values when the backend has less than <conns> concurrent connections. This
makes it possible to limit the load on the servers during normal loads, but
push it further for important loads without overloading the servers during
exceptional loads.

Since it's hard to get this value right, HAProxy automatically sets it to
10% of the sum of the maxconns of all frontends that may branch to this
backend (based on "use_backend" and "default_backend" rules). That way it's
safe to leave it unset. However, "use_backend" involving dynamic names are
not counted since there is no way to know if they could match or not.
Example :
# The servers will accept between 100 and 1000 concurrent connections each
# and the maximum of 1000 will be reached when the backend reaches 10000
# connections.
backend dynamic
   fullconn   10000
   server     srv1   dyn1:80 minconn 100 maxconn 1000
   server     srv2   dyn2:80 minconn 100 maxconn 1000
grace <time> (deprecated)
Maintain a proxy operational for some time after a soft stop

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
<time>    is the time (by default in milliseconds) for which the instance
          will remain operational with the frontend sockets still listening
          when a soft-stop is received via the SIGUSR1 signal.
This may be used to ensure that the services disappear in a certain order.
This was designed so that frontends which are dedicated to monitoring by an
external equipment fail immediately while other ones remain up for the time
needed by the equipment to detect the failure.

Note that currently, there is very little benefit in using this parameter,
and it may in fact complicate the soft-reconfiguration process more than
simplify it.
Specify the balancing factor for bounded-load consistent hashing

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
no
no
yes
yes
Arguments :
<factor> is the control for the maximum number of concurrent requests to
         send to a server, expressed as a percentage of the average number
         of concurrent requests across all of the active servers.
Specifying a "hash-balance-factor" for a server with "hash-type consistent"
enables an algorithm that prevents any one server from getting too many
requests at once, even if some hash buckets receive many more requests than
others. Setting <factor> to 0 (the default) disables the feature. Otherwise,
<factor> is a percentage greater than 100. For example, if <factor> is 150,
then no server will be allowed to have a load more than 1.5 times the average.
If server weights are used, they will be respected.

If the first-choice server is disqualified, the algorithm will choose another
server based on the request hash, until a server with additional capacity is
found. A higher <factor> allows more imbalance between the servers, while a
lower <factor> means that more servers will be checked on average, affecting
performance. Reasonable values are from 125 to 200.

This setting is also used by "balance random" which internally relies on the
consistent hashing mechanism.
hash-type <method> <function> <modifier>
Specify a method to use for mapping hashes to servers

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
<method> is the method used to select a server from the hash computed by
         the <function> :

  map-based   the hash table is a static array containing all alive servers.
              The hashes will be very smooth, will consider weights, but
              will be static in that weight changes while a server is up
              will be ignored. This means that there will be no slow start.
              Also, since a server is selected by its position in the array,
              most mappings are changed when the server count changes. This
              means that when a server goes up or down, or when a server is
              added to a farm, most connections will be redistributed to
              different servers. This can be inconvenient with caches for
              instance.

  consistent  the hash table is a tree filled with many occurrences of each
              server. The hash key is looked up in the tree and the closest
              server is chosen. This hash is dynamic, it supports changing
              weights while the servers are up, so it is compatible with the
              slow start feature. It has the advantage that when a server
              goes up or down, only its associations are moved. When a
              server is added to the farm, only a few part of the mappings
              are redistributed, making it an ideal method for caches.
              However, due to its principle, the distribution will never be
              very smooth and it may sometimes be necessary to adjust a
              server's weight or its ID to get a more balanced distribution.
              In order to get the same distribution on multiple load
              balancers, it is important that all servers have the exact
              same IDs. Note: consistent hash uses sdbm and avalanche if no
              hash function is specified.

<function> is the hash function to be used :

   sdbm   this function was created initially for sdbm (a public-domain
          reimplementation of ndbm) database library. It was found to do
          well in scrambling bits, causing better distribution of the keys
          and fewer splits. It also happens to be a good general hashing
          function with good distribution, unless the total server weight
          is a multiple of 64, in which case applying the avalanche
          modifier may help.

   djb2   this function was first proposed by Dan Bernstein many years ago
          on comp.lang.c. Studies have shown that for certain workload this
          function provides a better distribution than sdbm. It generally
          works well with text-based inputs though it can perform extremely
          poorly with numeric-only input or when the total server weight is
          a multiple of 33, unless the avalanche modifier is also used.

   wt6    this function was designed for HAProxy while testing other
          functions in the past. It is not as smooth as the other ones, but
          is much less sensible to the input data set or to the number of
          servers. It can make sense as an alternative to sdbm+avalanche or
          djb2+avalanche for consistent hashing or when hashing on numeric
          data such as a source IP address or a visitor identifier in a URL
          parameter.

   crc32  this is the most common CRC32 implementation as used in Ethernet,
          gzip, PNG, etc. It is slower than the other ones but may provide
          a better distribution or less predictable results especially when
          used on strings.

<modifier> indicates an optional method applied after hashing the key :

   avalanche   This directive indicates that the result from the hash
               function above should not be used in its raw form but that
               a 4-byte full avalanche hash must be applied first. The
               purpose of this step is to mix the resulting bits from the
               previous hash in order to avoid any undesired effect when
               the input contains some limited values or when the number of
               servers is a multiple of one of the hash's components (64
               for SDBM, 33 for DJB2). Enabling avalanche tends to make the
               result less predictable, but it's also not as smooth as when
               using the original function. Some testing might be needed
               with some workloads. This hash is one of the many proposed
               by Bob Jenkins.
The default hash type is "map-based" and is recommended for most usages. The
default function is "sdbm", the selection of a function should be based on
the range of the values being hashed.
http-after-response <action> <options...> [ { if | unless } <condition> ]
Access control for all Layer 7 responses (server, applet/service and internal
ones).

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
yes
yes
The http-after-response statement defines a set of rules which apply to layer
7 processing. The rules are evaluated in their declaration order when they
are met in a frontend, listen or backend section. Any rule may optionally be
followed by an ACL-based condition, in which case it will only be evaluated
if the condition is true. Since these rules apply on responses, the backend
rules are applied first, followed by the frontend's rules.

Unlike http-response rules, these ones are applied on all responses, the
server ones but also to all responses generated by HAProxy. These rules are
evaluated at the end of the responses analysis, before the data forwarding.

The first keyword is the rule's action. The supported actions are described
below.

There is no limit to the number of http-after-response statements per
instance.

Note: Errors emitted in early stage of the request parsing are handled by the
      multiplexer at a lower level, before any http analysis. Thus no
      http-after-response ruleset is evaluated on these errors.
Example:
http-after-response set-header Strict-Transport-Security "max-age=31536000"
http-after-response set-header Cache-Control "no-store,no-cache,private"
http-after-response set-header Pragma "no-cache"
http-after-response add-header <name> <fmt> [ { if | unless } <condition> ]
This appends an HTTP header field whose name is specified in <name> and whose
value is defined by <fmt> which follows the log-format rules (see Custom Log
Format in section 8.2.4). This may be used to send a cookie to a client for
example, or to pass some internal information.
This rule is not final, so it is possible to add other similar rules.
Note that header addition is performed immediately, so one rule might reuse
the resulting header from a previous rule.
http-after-response allow [ { if | unless } <condition> ]
This stops the evaluation of the rules and lets the response pass the check.
No further "http-after-response" rules are evaluated.
http-after-response del-header <name> [ -m <meth> ] [ { if | unless } <condition> ]
This removes all HTTP header fields whose name is specified in <name>. <meth>
is the matching method, applied on the header name. Supported matching methods
are "str" (exact match), "beg" (prefix match), "end" (suffix match), "sub"
(substring match) and "reg" (regex match). If not specified, exact matching
method is used.
http-after-response replace-header <name> <regex-match> <replace-fmt> [ { if | unless } <condition> ]
This works like "http-response replace-header".
Example:
http-after-response replace-header Set-Cookie (C=[^;]*);(.*) \1;ip=%bi;\2

# applied to:
Set-Cookie: C=1; expires=Tue, 14-Jun-2016 01:40:45 GMT

# outputs:
Set-Cookie: C=1;ip=192.168.1.20; expires=Tue, 14-Jun-2016 01:40:45 GMT

# assuming the backend IP is 192.168.1.20.
http-after-response replace-value <name> <regex-match> <replace-fmt> [ { if | unless } <condition> ]
This works like "http-response replace-value".
Example:
http-after-response replace-value Cache-control ^public$ private

# applied to:
Cache-Control: max-age=3600, public

# outputs:
Cache-Control: max-age=3600, private
http-after-response set-header <name> <fmt> [ { if | unless } <condition> ]
This does the same as "add-header" except that the header name is first
removed if it existed. This is useful when passing security information to
the server, where the header must not be manipulated by external users.
http-after-response set-status <status> [reason <str>] [ { if | unless } <condition> ]
This replaces the response status code with <status> which must be an integer
between 100 and 999. Optionally, a custom reason text can be provided defined
by <str>, or the default reason for the specified code will be used as a
fallback.
Example:
# return "431 Request Header Fields Too Large"
http-response set-status 431
# return "503 Slow Down", custom reason
http-response set-status 503 reason "Slow Down"
http-after-response set-var(<var-name>) <expr> [ { if | unless } <condition> ]
This is used to set the contents of a variable. The variable is declared
inline.
Arguments:
<var-name>  The name of the variable starts with an indication about its
            scope. The scopes allowed are:
              "proc" : the variable is shared with the whole process
              "sess" : the variable is shared with the whole session
              "txn"  : the variable is shared with the transaction
                       (request and response)
              "req"  : the variable is shared only during request
                       processing
              "res"  : the variable is shared only during response
                       processing
            This prefix is followed by a name. The separator is a '.'.
            The name may only contain characters 'a-z', 'A-Z', '0-9', '.'
            and '_'.

<expr>      Is a standard HAProxy expression formed by a sample-fetch
            followed by some converters.
Example:
http-after-response set-var(sess.last_redir) res.hdr(location)
This enables or disables the strict rewriting mode for following rules. It
does not affect rules declared before it and it is only applicable on rules
performing a rewrite on the responses. When the strict mode is enabled, any
rewrite failure triggers an internal error. Otherwise, such errors are
silently ignored. The purpose of the strict rewriting mode is to make some
rewrites optional while others must be performed to continue the response
processing.

By default, the strict rewriting mode is enabled. Its value is also reset
when a ruleset evaluation ends. So, for instance, if you change the mode on
the backend, the default mode is restored when HAProxy starts the frontend
rules evaluation.
http-after-response unset-var(<var-name>) [ { if | unless } <condition> ]
This is used to unset a variable. See "http-after-response set-var" for
details about <var-name>.
Example:
http-after-response unset-var(sess.last_redir)
Defines a comment for the following the http-check rule, reported in logs if
it fails.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
<string>  is the comment message to add in logs if the following http-check
          rule fails.
It only works for connect, send and expect rules. It is useful to make
user-friendly error reporting.
http-check connect [default] [port <expr>] [addr <ip>] [send-proxy] [via-socks4] [ssl] [sni <sni>] [alpn <alpn>] [linger] [proto <name>] [comment <msg>]
Opens a new connection to perform an HTTP health check

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
comment <msg>  defines a message to report if the rule evaluation fails.

default      Use default options of the server line to do the health
             checks. The server options are used only if not redefined.

port <expr>  if not set, check port or server port is used.
             It tells HAProxy where to open the connection to.
             <port> must be a valid TCP port source integer, from 1 to
             65535 or an sample-fetch expression.

addr <ip>    defines the IP address to do the health check.

send-proxy   send a PROXY protocol string

via-socks4   enables outgoing health checks using upstream socks4 proxy.

ssl          opens a ciphered connection

sni <sni>    specifies the SNI to use to do health checks over SSL.

alpn <alpn>  defines which protocols to advertise with ALPN. The protocol
             list consists in a comma-delimited list of protocol names,
             for instance: "h2,http/1.1". If it is not set, the server ALPN
             is used.

proto <name> forces the multiplexer's protocol to use for this connection.
             It must be an HTTP mux protocol and it must be usable on the
             backend side. The list of available protocols is reported in
             haproxy -vv.

linger       cleanly close the connection instead of using a single RST.
Just like tcp-check health checks, it is possible to configure the connection
to use to perform HTTP health check. This directive should also be used to
describe a scenario involving several request/response exchanges, possibly on
different ports or with different servers.

When there are no TCP port configured on the server line neither server port
directive, then the first step of the http-check sequence must be to specify
the port with a "http-check connect".

In an http-check ruleset a 'connect' is required, it is also mandatory to start
the ruleset with a 'connect' rule. Purpose is to ensure admin know what they
do.

When a connect must start the ruleset, if may still be preceded by set-var,
unset-var or comment rules.
Examples :
# check HTTP and HTTPs services on a server.
# first open port 80 thanks to server line port directive, then
# tcp-check opens port 443, ciphered and run a request on it:
option httpchk

http-check connect
http-check send meth GET uri / ver HTTP/1.1 hdr host haproxy.1wt.eu
http-check expect status 200-399
http-check connect port 443 ssl sni haproxy.1wt.eu
http-check send meth GET uri / ver HTTP/1.1 hdr host haproxy.1wt.eu
http-check expect status 200-399

server www 10.0.0.1 check port 80
Enable a maintenance mode upon HTTP/404 response to health-checks

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments : none
When this option is set, a server which returns an HTTP code 404 will be
excluded from further load-balancing, but will still receive persistent
connections. This provides a very convenient method for Web administrators
to perform a graceful shutdown of their servers. It is also important to note
that a server which is detected as failed while it was in this mode will not
generate an alert, just a notice. If the server responds 2xx or 3xx again, it
will immediately be reinserted into the farm. The status on the stats page
reports "NOLB" for a server in this mode. It is important to note that this
option only works in conjunction with the "httpchk" option. If this option
is used with "http-check expect", then it has precedence over it so that 404
responses will still be considered as soft-stop. Note also that a stopped
server will stay stopped even if it replies 404s. This option is only
evaluated for running servers.
http-check expect [min-recv <int>] [comment <msg>] [ok-status <st>] [error-status <st>] [tout-status <st>] [on-success <fmt>] [on-error <fmt>] [status-code <expr>] [!] <match> <pattern>
Make HTTP health checks consider response contents or specific status codes

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
comment <msg>  defines a message to report if the rule evaluation fails.

min-recv  is optional and can define the minimum amount of data required to
          evaluate the current expect rule. If the number of received bytes
          is under this limit, the check will wait for more data. This
          option can be used to resolve some ambiguous matching rules or to
          avoid executing costly regex matches on content known to be still
          incomplete. If an exact string is used, the minimum between the
          string length and this parameter is used. This parameter is
          ignored if it is set to -1. If the expect rule does not match,
          the check will wait for more data. If set to 0, the evaluation
          result is always conclusive.

ok-status <st>     is optional and can be used to set the check status if
                   the expect rule is successfully evaluated and if it is
                   the last rule in the tcp-check ruleset. "L7OK", "L7OKC",
                   "L6OK" and "L4OK" are supported :
                     - L7OK  : check passed on layer 7
                     - L7OKC : check conditionally passed on layer 7, set
                               server to NOLB state.
                     - L6OK  : check passed on layer 6
                     - L4OK  : check passed on layer 4
                   By default "L7OK" is used.

error-status <st>  is optional and can be used to set the check status if
                   an error occurred during the expect rule evaluation.
                   "L7OKC", "L7RSP", "L7STS", "L6RSP" and "L4CON" are
                   supported :
                     - L7OKC : check conditionally passed on layer 7, set
                               server to NOLB state.
                     - L7RSP : layer 7 invalid response - protocol error
                     - L7STS : layer 7 response error, for example HTTP 5xx
                     - L6RSP : layer 6 invalid response - protocol error
                     - L4CON : layer 1-4 connection problem
                   By default "L7RSP" is used.

tout-status <st>   is optional and can be used to set the check status if
                   a timeout occurred during the expect rule evaluation.
                   "L7TOUT", "L6TOUT", and "L4TOUT" are supported :
                     - L7TOUT : layer 7 (HTTP/SMTP) timeout
                     - L6TOUT : layer 6 (SSL) timeout
                     - L4TOUT : layer 1-4 timeout
                   By default "L7TOUT" is used.

on-success <fmt>   is optional and can be used to customize the
                   informational message reported in logs if the expect
                   rule is successfully evaluated and if it is the last rule
                   in the tcp-check ruleset. <fmt> is a log-format string.

on-error <fmt>     is optional and can be used to customize the
                   informational message reported in logs if an error
                   occurred during the expect rule evaluation. <fmt> is a
                   log-format string.

<match>   is a keyword indicating how to look for a specific pattern in the
          response. The keyword may be one of "status", "rstatus", "hdr",
          "fhdr", "string", or "rstring". The keyword may be preceded by an
          exclamation mark ("!") to negate the match. Spaces are allowed
          between the exclamation mark and the keyword. See below for more
          details on the supported keywords.

<pattern> is the pattern to look for. It may be a string, a regular
          expression or a more complex pattern with several arguments. If
          the string pattern contains spaces, they must be escaped with the
          usual backslash ('\').
By default, "option httpchk" considers that response statuses 2xx and 3xx
are valid, and that others are invalid. When "http-check expect" is used,
it defines what is considered valid or invalid. Only one "http-check"
statement is supported in a backend. If a server fails to respond or times
out, the check obviously fails. The available matches are :

  status <codes> :  test the status codes found parsing <codes> string. it
                    must be a comma-separated list of status codes or range
                    codes. A health check response will be considered as
                    valid if the response's status code matches any status
                    code or is inside any range of the list. If the "status"
                    keyword is prefixed with "!", then the response will be
                    considered invalid if the status code matches.

  rstatus <regex> : test a regular expression for the HTTP status code.
                    A health check response will be considered valid if the
                    response's status code matches the expression. If the
                    "rstatus" keyword is prefixed with "!", then the response
                    will be considered invalid if the status code matches.
                    This is mostly used to check for multiple codes.

  hdr  { name | name-lf } [ -m <meth> ] <name>
       [ { value | value-lf } [ -m <meth> ] <value> :
                    test the specified header pattern on the HTTP response
                    headers. The name pattern is mandatory but the value
                    pattern is optional. If not specified, only the header
                    presence is verified. <meth> is the matching method,
                    applied on the header name or the header value. Supported
                    matching methods are "str" (exact match), "beg" (prefix
                    match), "end" (suffix match), "sub" (substring match) or
                    "reg" (regex match). If not specified, exact matching
                    method is used. If the "name-lf" parameter is used,
                    <name> is evaluated as a log-format string. If "value-lf"
                    parameter is used, <value> is evaluated as a log-format
                    string. These parameters cannot be used with the regex
                    matching method. Finally, the header value is considered
                    as comma-separated list. Note that matchings are case
                    insensitive on the header names.

  fhdr { name | name-lf } [ -m <meth> ] <name>
       [ { value | value-lf } [ -m <meth> ] <value> :
                    test the specified full header pattern on the HTTP
                    response headers. It does exactly the same than "hdr"
                    keyword, except the full header value is tested, commas
                    are not considered as delimiters.

  string <string> : test the exact string match in the HTTP response body.
                    A health check response will be considered valid if the
                    response's body contains this exact string. If the
                    "string" keyword is prefixed with "!", then the response
                    will be considered invalid if the body contains this
                    string. This can be used to look for a mandatory word at
                    the end of a dynamic page, or to detect a failure when a
                    specific error appears on the check page (e.g. a stack
                    trace).

  rstring <regex> : test a regular expression on the HTTP response body.
                    A health check response will be considered valid if the
                    response's body matches this expression. If the "rstring"
                    keyword is prefixed with "!", then the response will be
                    considered invalid if the body matches the expression.
                    This can be used to look for a mandatory word at the end
                    of a dynamic page, or to detect a failure when a specific
                    error appears on the check page (e.g. a stack trace).

  string-lf <fmt> : test a log-format string match in the HTTP response body.
                    A health check response will be considered valid if the
                    response's body contains the  string resulting of the
                    evaluation of <fmt>, which follows the log-format rules.
                    If prefixed with "!", then the response will be
                    considered invalid if the body contains the string.

It is important to note that the responses will be limited to a certain size
defined by the global "tune.bufsize" option, which defaults to 16384 bytes.
Thus, too large responses may not contain the mandatory pattern when using
"string" or "rstring". If a large response is absolutely required, it is
possible to change the default max size by setting the global variable.
However, it is worth keeping in mind that parsing very large responses can
waste some CPU cycles, especially when regular expressions are used, and that
it is always better to focus the checks on smaller resources.

In an http-check ruleset, the last expect rule may be implicit. If no expect
rule is specified after the last "http-check send", an implicit expect rule
is defined to match on 2xx or 3xx status codes. It means this rule is also
defined if there is no "http-check" rule at all, when only "option httpchk"
is set.

Last, if "http-check expect" is combined with "http-check disable-on-404",
then this last one has precedence when the server responds with 404.
Examples :
# only accept status 200 as valid
http-check expect status 200,201,300-310

# be sure a sessid coookie is set
http-check expect header name "set-cookie" value -m beg "sessid="

# consider SQL errors as errors
http-check expect ! string SQL\ Error

# consider status 5xx only as errors
http-check expect ! rstatus ^5

# check that we have a correct hexadecimal tag before /html
http-check expect rstring <!--tag:[0-9a-f]*--></html>
http-check send [meth <method>] [{ uri <uri> | uri-lf <fmt> }>] [ver <version>] [hdr <name> <fmt>]* [{ body <string> | body-lf <fmt> }] [comment <msg>]
Add a possible list of headers and/or a body to the request sent during HTTP
health checks.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
comment <msg>  defines a message to report if the rule evaluation fails.

meth <method>  is the optional HTTP method used with the requests. When not
               set, the "OPTIONS" method is used, as it generally requires
               low server processing and is easy to filter out from the
               logs. Any method may be used, though it is not recommended
               to invent non-standard ones.

uri <uri>      is optional and set the URI referenced in the HTTP requests
               to the string <uri>. It defaults to "/" which is accessible
               by default on almost any server, but may be changed to any
               other URI. Query strings are permitted.

uri-lf <fmt>   is optional and set the URI referenced in the HTTP requests
               using the log-format string <fmt>. It defaults to "/" which
               is accessible by default on almost any server, but may be
               changed to any other URI. Query strings are permitted.

ver <version>  is the optional HTTP version string. It defaults to
               "HTTP/1.0" but some servers might behave incorrectly in HTTP
               1.0, so turning it to HTTP/1.1 may sometimes help. Note that
               the Host field is mandatory in HTTP/1.1, use "hdr" argument
               to add it.

hdr <name> <fmt>  adds the HTTP header field whose name is specified in
                  <name> and whose value is defined by <fmt>, which follows
                  to the log-format rules.

body <string>  add the body defined by <string> to the request sent during
               HTTP health checks. If defined, the "Content-Length" header
               is thus automatically added to the request.

body-lf <fmt>  add the body defined by the log-format string <fmt> to the
               request sent during HTTP health checks. If defined, the
               "Content-Length" header is thus automatically added to the
               request.
In addition to the request line defined by the "option httpchk" directive,
this one is the valid way to add some headers and optionally a body to the
request sent during HTTP health checks. If a body is defined, the associate
"Content-Length" header is automatically added. Thus, this header or
"Transfer-encoding" header should not be present in the request provided by
"http-check send". If so, it will be ignored. The old trick consisting to add
headers after the version string on the "option httpchk" line is now
deprecated.

Also "http-check send" doesn't support HTTP keep-alive. Keep in mind that it
will automatically append a "Connection: close" header, unless a Connection
header has already already been configured via a hdr entry.

Note that the Host header and the request authority, when both defined, are
automatically synchronized. It means when the HTTP request is sent, when a
Host is inserted in the request, the request authority is accordingly
updated. Thus, don't be surprised if the Host header value overwrites the
configured request authority.

Note also for now, no Host header is automatically added in HTTP/1.1 or above
requests. You should add it explicitly.
Enable emission of a state header with HTTP health checks

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments : none
When this option is set, HAProxy will systematically send a special header
"X-Haproxy-Server-State" with a list of parameters indicating to each server
how they are seen by HAProxy. This can be used for instance when a server is
manipulated without access to HAProxy and the operator needs to know whether
HAProxy still sees it up or not, or if the server is the last one in a farm.

The header is composed of fields delimited by semi-colons, the first of which
is a word ("UP", "DOWN", "NOLB"), possibly followed by a number of valid
checks on the total number before transition, just as appears in the stats
interface. Next headers are in the form "<variable>=<value>", indicating in
no specific order some values available in the stats interface :
  - a variable "address", containing the address of the backend server.
    This corresponds to the <address> field in the server declaration. For
    unix domain sockets, it will read "unix".

  - a variable "port", containing the port of the backend server. This
    corresponds to the <port> field in the server declaration. For unix
    domain sockets, it will read "unix".

  - a variable "name", containing the name of the backend followed by a slash
    ("/") then the name of the server. This can be used when a server is
    checked in multiple backends.

  - a variable "node" containing the name of the HAProxy node, as set in the
    global "node" variable, otherwise the system's hostname if unspecified.

  - a variable "weight" indicating the weight of the server, a slash ("/")
    and the total weight of the farm (just counting usable servers). This
    helps to know if other servers are available to handle the load when this
    one fails.

  - a variable "scur" indicating the current number of concurrent connections
    on the server, followed by a slash ("/") then the total number of
    connections on all servers of the same backend.

  - a variable "qcur" indicating the current number of requests in the
    server's queue.

Example of a header received by the application server :
  >>>  X-Haproxy-Server-State: UP 2/3; name=bck/srv2; node=lb1; weight=1/2; \
         scur=13/22; qcur=0
http-check set-var(<var-name>) <expr>
This operation sets the content of a variable. The variable is declared inline.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
<var-name>  The name of the variable starts with an indication about its
            scope. The scopes allowed for http-check are:
              "proc" : the variable is shared with the whole process.
              "sess" : the variable is shared with the tcp-check session.
              "check": the variable is declared for the lifetime of the tcp-check.
            This prefix is followed by a name. The separator is a '.'.
            The name may only contain characters 'a-z', 'A-Z', '0-9', '.',
            and '-'.

<expr>      Is a sample-fetch expression potentially followed by converters.
Examples :
http-check set-var(check.port) int(1234)
Free a reference to a variable within its scope.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
<var-name>  The name of the variable starts with an indication about its
            scope. The scopes allowed for http-check are:
              "proc" : the variable is shared with the whole process.
              "sess" : the variable is shared with the tcp-check session.
              "check": the variable is declared for the lifetime of the tcp-check.
            This prefix is followed by a name. The separator is a '.'.
            The name may only contain characters 'a-z', 'A-Z', '0-9', '.',
            and '-'.
Examples :
http-check unset-var(check.port)
http-error status <code> [content-type <type>] [ { default-errorfiles | errorfile <file> | errorfiles <name> | file <file> | lf-file <file> | string <str> | lf-string <fmt> } ] [ hdr <name> <fmt> ]*
Defines a custom error message to use instead of errors generated by HAProxy.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
status <code>        is the HTTP status code. It must be specified.
                     Currently, HAProxy is capable of generating codes
                     200, 400, 401, 403, 404, 405, 407, 408, 410, 413, 425,
                     429, 500, 501, 502, 503, and 504.

content-type <type>  is the response content type, for instance
                     "text/plain". This parameter is ignored and should be
                     omitted when an errorfile is configured or when the
                     payload is empty. Otherwise, it must be defined.

default-errorfiles   Reset the previously defined error message for current
                     proxy for the status <code>. If used on a backend, the
                     frontend error message is used, if defined. If used on
                     a frontend, the default error message is used.

errorfile <file>     designates a file containing the full HTTP response.
                     It is recommended to follow the common practice of
                     appending ".http" to the filename so that people do
                     not confuse the response with HTML error pages, and to
                     use absolute paths, since files are read before any
                     chroot is performed.

errorfiles <name>    designates the http-errors section to use to import
                     the error message with the status code <code>. If no
                     such message is found, the proxy's error messages are
                     considered.

file <file>          specifies the file to use as response payload. If the
                     file is not empty, its content-type must be set as
                     argument to "content-type", otherwise, any
                     "content-type" argument is ignored. <file> is
                     considered as a raw string.

string <str>         specifies the raw string to use as response payload.
                     The content-type must always be set as argument to
                     "content-type".

lf-file <file>       specifies the file to use as response payload. If the
                     file is not empty, its content-type must be set as
                     argument to "content-type", otherwise, any
                     "content-type" argument is ignored. <file> is
                     evaluated as a log-format string.

lf-string <str>      specifies the log-format string to use as response
                     payload. The content-type must always be set as
                     argument to "content-type".

hdr <name> <fmt>     adds to the response the HTTP header field whose name
                     is specified in <name> and whose value is defined by
                     <fmt>, which follows to the log-format rules.
                     This parameter is ignored if an errorfile is used.
This directive may be used instead of "errorfile", to define a custom error
message. As "errorfile" directive, it is used for errors detected and
returned by HAProxy. If an errorfile is defined, it is parsed when HAProxy
starts and must be valid according to the HTTP standards. The generated
response must not exceed the configured buffer size (BUFFSIZE), otherwise an
internal error will be returned.  Finally, if you consider to use some
http-after-response rules to rewrite these errors, the reserved buffer space
should be available (see "tune.maxrewrite").

The files are read at the same time as the configuration and kept in memory.
For this reason, the errors continue to be returned even when the process is
chrooted, and no file change is considered while the process is running.

Note: 400/408/500 errors emitted in early stage of the request parsing are
      handled by the multiplexer at a lower level. No custom formatting is
      supported at this level. Thus only static error messages, defined with
      "errorfile" directive, are supported. However, this limitation only
      exists during the request headers parsing or between two transactions.
http-request <action> [options...] [ { if | unless } <condition> ]
Access control for Layer 7 requests

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
yes
yes
The http-request statement defines a set of rules which apply to layer 7
processing. The rules are evaluated in their declaration order when they are
met in a frontend, listen or backend section. Any rule may optionally be
followed by an ACL-based condition, in which case it will only be evaluated
if the condition is true.

The first keyword is the rule's action. The supported actions are described
below.

There is no limit to the number of http-request statements per instance.
Example:
acl nagios src 192.168.129.3
acl local_net src 192.168.0.0/16
acl auth_ok http_auth(L1)

http-request allow if nagios
http-request allow if local_net auth_ok
http-request auth realm Gimme if local_net auth_ok
http-request deny
Example:
acl key req.hdr(X-Add-Acl-Key) -m found
acl add path /addacl
acl del path /delacl

acl myhost hdr(Host) -f myhost.lst

http-request add-acl(myhost.lst) %[req.hdr(X-Add-Acl-Key)] if key add
http-request del-acl(myhost.lst) %[req.hdr(X-Add-Acl-Key)] if key del
Example:
acl value  req.hdr(X-Value) -m found
acl setmap path /setmap
acl delmap path /delmap

use_backend bk_appli if { hdr(Host),map_str(map.lst) -m found }

http-request set-map(map.lst) %[src] %[req.hdr(X-Value)] if setmap value
http-request del-map(map.lst) %[src]                     if delmap
http-request add-acl(<file-name>) <key fmt> [ { if | unless } <condition> ]
This is used to add a new entry into an ACL. The ACL must be loaded from a
file (even a dummy empty file). The file name of the ACL to be updated is
passed between parentheses. It takes one argument: <key fmt>, which follows
log-format rules, to collect content of the new entry. It performs a lookup
in the ACL before insertion, to avoid duplicated (or more) values. This
lookup is done by a linear search and can be expensive with large lists!
It is the equivalent of the "add acl" command from the stats socket, but can
be triggered by an HTTP request.
http-request add-header <name> <fmt> [ { if | unless } <condition> ]
This appends an HTTP header field whose name is specified in <name> and
whose value is defined by <fmt> which follows the log-format rules (see
Custom Log Format in section 8.2.4). This is particularly useful to pass
connection-specific information to the server (e.g. the client's SSL
certificate), or to combine several headers into one. This rule is not
final, so it is possible to add other similar rules. Note that header
addition is performed immediately, so one rule might reuse the resulting
header from a previous rule.
http-request allow [ { if | unless } <condition> ]
This stops the evaluation of the rules and lets the request pass the check.
No further "http-request" rules are evaluated.
http-request auth [realm <realm>] [ { if | unless } <condition> ]
This stops the evaluation of the rules and immediately responds with an
HTTP 401 or 407 error code to invite the user to present a valid user name
and password. No further "http-request" rules are evaluated. An optional
"realm" parameter is supported, it sets the authentication realm that is
returned with the response (typically the application's name).

The corresponding proxy's error message is used. It may be customized using
an "errorfile" or an "http-error" directive. For 401 responses, all
occurrences of the WWW-Authenticate header are removed and replaced by a new
one with a basic authentication challenge for realm "<realm>". For 407
responses, the same is done on the Proxy-Authenticate header. If the error
message must not be altered, consider to use "http-request return" rule
instead.
Example:
acl auth_ok http_auth_group(L1) G1
http-request auth unless auth_ok
http-request cache-use <name> [ { if | unless } <condition> ]
See section 6.2 about cache setup.
http-request capture <sample> [ len <length> | id <id> ] [ { if | unless } <condition> ]
This captures sample expression <sample> from the request buffer, and
converts it to a string of at most <len> characters. The resulting string is
stored into the next request "capture" slot, so it will possibly appear next
to some captured HTTP headers. It will then automatically appear in the logs,
and it will be possible to extract it using sample fetch rules to feed it
into headers or anything. The length should be limited given that this size
will be allocated for each capture during the whole session life.
Please check section 7.3 (Fetching samples) and "capture request header" for
more information.

If the keyword "id" is used instead of "len", the action tries to store the
captured string in a previously declared capture slot. This is useful to run
captures in backends. The slot id can be declared by a previous directive
"http-request capture" or with the "declare capture" keyword.

When using this action in a backend, double check that the relevant
frontend(s) have the required capture slots otherwise, this rule will be
ignored at run time. This can't be detected at configuration parsing time
due to HAProxy's ability to dynamically resolve backend name at runtime.
http-request del-acl(<file-name>) <key fmt> [ { if | unless } <condition> ]
This is used to delete an entry from an ACL. The ACL must be loaded from a
file (even a dummy empty file). The file name of the ACL to be updated is
passed between parentheses. It takes one argument: <key fmt>, which follows
log-format rules, to collect content of the entry to delete.
It is the equivalent of the "del acl" command from the stats socket, but can
be triggered by an HTTP request.
http-request del-header <name> [ -m <meth> ] [ { if | unless } <condition> ]
This removes all HTTP header fields whose name is specified in <name>. <meth>
is the matching method, applied on the header name. Supported matching methods
are "str" (exact match), "beg" (prefix match), "end" (suffix match), "sub"
(substring match) and "reg" (regex match). If not specified, exact matching
method is used.
http-request del-map(<file-name>) <key fmt> [ { if | unless } <condition> ]
This is used to delete an entry from a MAP. The MAP must be loaded from a
file (even a dummy empty file). The file name of the MAP to be updated is
passed between parentheses. It takes one argument: <key fmt>, which follows
log-format rules, to collect content of the entry to delete.
It takes one argument: "file name" It is the equivalent of the "del map"
command from the stats socket, but can be triggered by an HTTP request.
http-request deny [deny_status <status>] [ { if | unless } <condition> ]
http-request deny [ { status | deny_status } <code>] [content-type <type>] [ { default-errorfiles | errorfile <file> | errorfiles <name> | file <file> | lf-file <file> | string <str> | lf-string <fmt> } ] [ hdr <name> <fmt> ]* [ { if | unless } <condition> ]
This stops the evaluation of the rules and immediately rejects the request.
By default an HTTP 403 error is returned. But the response may be customized
using same syntax than "http-request return" rules. Thus, see "http-request
return" for details. For compatibility purpose, when no argument is defined,
or only "deny_status", the argument "default-errorfiles" is implied. It means
"http-request deny [deny_status <status>]" is an alias of
"http-request deny [status <status>] default-errorfiles".
No further "http-request" rules are evaluated.
See also "http-request return".
http-request disable-l7-retry [ { if | unless } <condition> ]
This disables any attempt to retry the request if it fails for any other
reason than a connection failure. This can be useful for example to make
sure POST requests aren't retried on failure.
http-request do-resolve(<var>,<resolvers>,[ipv4,ipv6]) <expr> :
This action performs a DNS resolution of the output of <expr> and stores
the result in the variable <var>. It uses the DNS resolvers section
pointed by <resolvers>.
It is possible to choose a resolution preference using the optional
arguments 'ipv4' or 'ipv6'.
When performing the DNS resolution, the client side connection is on
pause waiting till the end of the resolution.
If an IP address can be found, it is stored into <var>. If any kind of
error occurs, then <var> is not set.
One can use this action to discover a server IP address at run time and
based on information found in the request (IE a Host header).
If this action is used to find the server's IP address (using the
"set-dst" action), then the server IP address in the backend must be set
to 0.0.0.0. The do-resolve action takes an host-only parameter, any port must
be removed from the string.
Example:
resolvers mydns
  nameserver local 127.0.0.53:53
  nameserver google 8.8.8.8:53
  timeout retry   1s
  hold valid 10s
  hold nx 3s
  hold other 3s
  hold obsolete 0s
  accepted_payload_size 8192

frontend fe
  bind 10.42.0.1:80
  http-request do-resolve(txn.myip,mydns,ipv4) hdr(Host),lower,regsub(:[0-9]*$,)
  http-request capture var(txn.myip) len 40

  # return 503 when the variable is not set,
  # which mean DNS resolution error
  use_backend b_503 unless { var(txn.myip) -m found }

  default_backend be

backend b_503
  # dummy backend used to return 503.
  # one can use the errorfile directive to send a nice
  # 503 error page to end users

backend be
  # rule to prevent HAProxy from reconnecting to services
  # on the local network (forged DNS name used to scan the network)
  http-request deny if { var(txn.myip) -m ip 127.0.0.0/8 10.0.0.0/8 }
  http-request set-dst var(txn.myip)
  server clear 0.0.0.0:0
NOTE: Don't forget to set the "protection" rules to ensure HAProxy won't
      be used to scan the network or worst won't loop over itself...
http-request early-hint <name> <fmt> [ { if | unless } <condition> ]
This is used to build an HTTP 103 Early Hints response prior to any other one.
This appends an HTTP header field to this response whose name is specified in
<name> and whose value is defined by <fmt> which follows the log-format rules
(see Custom Log Format in section 8.2.4). This is particularly useful to pass
to the client some Link headers to preload resources required to render the
HTML documents.

See RFC 8297 for more information.
http-request normalize-uri <normalizer> [ { if | unless } <condition> ]
http-request normalize-uri fragment-encode [ { if | unless } <condition> ]
http-request normalize-uri fragment-strip [ { if | unless } <condition> ]
http-request normalize-uri path-merge-slashes [ { if | unless } <condition> ]
http-request normalize-uri path-strip-dot [ { if | unless } <condition> ]
http-request normalize-uri path-strip-dotdot [ full ] [ { if | unless } <condition> ]
http-request normalize-uri percent-decode-unreserved [ strict ] [ { if | unless } <condition> ]
http-request normalize-uri percent-to-uppercase [ strict ] [ { if | unless } <condition> ]
http-request normalize-uri query-sort-by-name [ { if | unless } <condition> ]
Performs normalization of the request's URI.

URI normalization in HAProxy 2.4 is currently available as an experimental
technical preview. As such, it requires the global directive
'expose-experimental-directives' first to be able to invoke it. You should be
prepared that the behavior of normalizers might change to fix possible
issues, possibly breaking proper request processing in your infrastructure.

Each normalizer handles a single type of normalization to allow for a
fine-grained selection of the level of normalization that is appropriate for
the supported backend.

As an example the "path-strip-dotdot" normalizer might be useful for a static
fileserver that directly maps the requested URI to the path within the local
filesystem. However it might break routing of an API that expects a specific
number of segments in the path.

It is important to note that some normalizers might result in unsafe
transformations for broken URIs. It might also be possible that a combination
of normalizers that are safe by themselves results in unsafe transformations
when improperly combined.

As an example the "percent-decode-unreserved" normalizer might result in
unexpected results when a broken URI includes bare percent characters. One
such a broken URI is "/%%36%36" which would be decoded to "/%66" which in
turn is equivalent to "/f". By specifying the "strict" option requests to
such a broken URI would safely be rejected.

The following normalizers are available:

- fragment-encode: Encodes "#" as "%23".

    The "fragment-strip" normalizer should be preferred, unless it is known
    that broken clients do not correctly encode '#' within the path component.
Example:
- /#foo  -> /%23foo
- fragment-strip: Removes the URI's "fragment" component.

    According to RFC 3986#3.5 the "fragment" component of an URI should not
    be sent, but handled by the User Agent after retrieving a resource.

    This normalizer should be applied first to ensure that the fragment is
    not interpreted as part of the request's path component.
Example:
- /#foo  -> /
- path-strip-dot: Removes "/./" segments within the "path" component
    (RFC 3986#6.2.2.3).

    Segments including percent encoded dots ("%2E") will not be detected. Use
    the "percent-decode-unreserved" normalizer first if this is undesired.
Example:
- /.            -> /
- /./bar/       -> /bar/
- /a/./a        -> /a/a
- /.well-known/ -> /.well-known/ (no change)
- path-strip-dotdot: Normalizes "/../" segments within the "path" component
    (RFC 3986#6.2.2.3).

    This merges segments that attempt to access the parent directory with
    their preceding segment.

    Empty segments do not receive special treatment. Use the "merge-slashes"
    normalizer first if this is undesired.

    Segments including percent encoded dots ("%2E") will not be detected. Use
    the "percent-decode-unreserved" normalizer first if this is undesired.
Example:
- /foo/../     -> /
- /foo/../bar/ -> /bar/
- /foo/bar/../ -> /foo/
- /../bar/     -> /../bar/
- /bar/../../  -> /../
- /foo//../    -> /foo/
- /foo/%2E%2E/ -> /foo/%2E%2E/
If the "full" option is specified then "../" at the beginning will be
removed as well:
Example:
- /../bar/     -> /bar/
- /bar/../../  -> /
- path-merge-slashes: Merges adjacent slashes within the "path" component
    into a single slash.
Example:
- //        -> /
- /foo//bar -> /foo/bar
- percent-decode-unreserved: Decodes unreserved percent encoded characters to
    their representation as a regular character (RFC 3986#6.2.2.2).

    The set of unreserved characters includes all letters, all digits, "-",
    ".", "_", and "~".
Example:
- /%61dmin       -> /admin
- /foo%3Fbar=baz -> /foo%3Fbar=baz (no change)
- /%%36%36       -> /%66           (unsafe)
- /%ZZ           -> /%ZZ
If the "strict" option is specified then invalid sequences will result
in a HTTP 400 Bad Request being returned.
Example:
- /%%36%36 -> HTTP 400
- /%ZZ     -> HTTP 400
- percent-to-uppercase: Uppercases letters within percent-encoded sequences
    (RFC 3986#6.2.2.1).
Example:
- /%6f -> /%6F
- /%zz -> /%zz
If the "strict" option is specified then invalid sequences will result
in a HTTP 400 Bad Request being returned.
Example:
- /%zz -> HTTP 400
- query-sort-by-name: Sorts the query string parameters by parameter name.
    Parameters are assumed to be delimited by '&'. Shorter names sort before
    longer names and identical parameter names maintain their relative order.
Example:
- /?c=3&a=1&b=2         -> /?a=1&b=2&c=3
- /?aaa=3&a=1&aa=2      -> /?a=1&aa=2&aaa=3
- /?a=3&b=4&a=1&b=5&a=2 -> /?a=3&a=1&a=2&b=4&b=5
http-request redirect <rule> [ { if | unless } <condition> ]
This performs an HTTP redirection based on a redirect rule. This is exactly
the same as the "redirect" statement except that it inserts a redirect rule
which can be processed in the middle of other "http-request" rules and that
these rules use the "log-format" strings. See the "redirect" keyword for the
rule's syntax.
http-request reject [ { if | unless } <condition> ]
This stops the evaluation of the rules and immediately closes the connection
without sending any response. It acts similarly to the
"tcp-request content reject" rules. It can be useful to force an immediate
connection closure on HTTP/2 connections.
http-request replace-header <name> <match-regex> <replace-fmt> [ { if | unless } <condition> ]
This matches the value of all occurrences of header field <name> against
<match-regex>. Matching is performed case-sensitively. Matching values are
completely replaced by <replace-fmt>. Format characters are allowed in
<replace-fmt> and work like <fmt> arguments in "http-request add-header".
Standard back-references using the backslash ('\') followed by a number are
supported.

This action acts on whole header lines, regardless of the number of values
they may contain. Thus it is well-suited to process headers naturally
containing commas in their value, such as If-Modified-Since. Headers that
contain a comma-separated list of values, such as Accept, should be processed
using "http-request replace-value".
Example:
http-request replace-header Cookie foo=([^;]*);(.*) foo=\1;ip=%bi;\2

# applied to:
Cookie: foo=foobar; expires=Tue, 14-Jun-2016 01:40:45 GMT;

# outputs:
Cookie: foo=foobar;ip=192.168.1.20; expires=Tue, 14-Jun-2016 01:40:45 GMT;

# assuming the backend IP is 192.168.1.20

http-request replace-header User-Agent curl foo

# applied to:
User-Agent: curl/7.47.0

# outputs:
User-Agent: foo
http-request replace-path <match-regex> <replace-fmt> [ { if | unless } <condition> ]
This works like "replace-header" except that it works on the request's path
component instead of a header. The path component starts at the first '/'
after an optional scheme+authority and ends before the question mark. Thus,
the replacement does not modify the scheme, the authority and the
query-string.

It is worth noting that regular expressions may be more expensive to evaluate
than certain ACLs, so rare replacements may benefit from a condition to avoid
performing the evaluation at all if it does not match.
Example:
# prefix /foo : turn /bar?q=1 into /foo/bar?q=1 :
http-request replace-path (.*) /foo\1

# strip /foo : turn /foo/bar?q=1 into /bar?q=1
http-request replace-path /foo/(.*) /\1
# or more efficient if only some requests match :
http-request replace-path /foo/(.*) /\1 if { url_beg /foo/ }
http-request replace-pathq <match-regex> <replace-fmt> [ { if | unless } <condition> ]
This does the same as "http-request replace-path" except that the path
contains the query-string if any is present. Thus, the path and the
query-string are replaced.
Example:
# suffix /foo : turn /bar?q=1 into /bar/foo?q=1 :
http-request replace-pathq ([^?]*)(\?(.*))? \1/foo\2
http-request replace-uri <match-regex> <replace-fmt> [ { if | unless } <condition> ]
This works like "replace-header" except that it works on the request's URI part
instead of a header. The URI part may contain an optional scheme, authority or
query string. These are considered to be part of the value that is matched
against.

It is worth noting that regular expressions may be more expensive to evaluate
than certain ACLs, so rare replacements may benefit from a condition to avoid
performing the evaluation at all if it does not match.

IMPORTANT NOTE: historically in HTTP/1.x, the vast majority of requests sent
by browsers use the "origin form", which differs from the "absolute form" in
that they do not contain a scheme nor authority in the URI portion. Mostly
only requests sent to proxies, those forged by hand and some emitted by
certain applications use the absolute form. As such, "replace-uri" usually
works fine most of the time in HTTP/1.x with rules starting with a "/". But
with HTTP/2, clients are encouraged to send absolute URIs only, which look
like the ones HTTP/1 clients use to talk to proxies. Such partial replace-uri
rules may then fail in HTTP/2 when they work in HTTP/1. Either the rules need
to be adapted to optionally match a scheme and authority, or replace-path
should be used.
Example:
# rewrite all "http" absolute requests to "https":
http-request replace-uri ^http://(.*) https://\1

# prefix /foo : turn /bar?q=1 into /foo/bar?q=1 :
http-request replace-uri ([^/:]*://[^/]*)?(.*) \1/foo\2
http-request replace-value <name> <match-regex> <replace-fmt> [ { if | unless } <condition> ]
This works like "replace-header" except that it matches the regex against
every comma-delimited value of the header field <name> instead of the
entire header. This is suited for all headers which are allowed to carry
more than one value. An example could be the Accept header.
Example:
http-request replace-value X-Forwarded-For ^192\.168\.(.*)$ 172.16.\1

# applied to:
X-Forwarded-For: 192.168.10.1, 192.168.13.24, 10.0.0.37

# outputs:
X-Forwarded-For: 172.16.10.1, 172.16.13.24, 10.0.0.37
http-request return [status <code>] [content-type <type>] [ { default-errorfiles | errorfile <file> | errorfiles <name> | file <file> | lf-file <file> | string <str> | lf-string <fmt> } ] [ hdr <name> <fmt> ]* [ { if | unless } <condition> ]
This stops the evaluation of the rules and immediately returns a response. The
default status code used for the response is 200. It can be optionally
specified as an arguments to "status". The response content-type may also be
specified as an argument to "content-type". Finally the response itself may
be defined. It can be a full HTTP response specifying the errorfile to use,
or the response payload specifying the file or the string to use. These rules
are followed to create the response :

* If neither the errorfile nor the payload to use is defined, a dummy
  response is returned. Only the "status" argument is considered. It can be
  any code in the range [200, 599]. The "content-type" argument, if any, is
  ignored.

* If "default-errorfiles" argument is set, the proxy's errorfiles are
  considered.  If the "status" argument is defined, it must be one of the
  status code handled by HAProxy (200, 400, 403, 404, 405, 408, 410, 413,
  425, 429, 500, 501, 502, 503, and 504). The "content-type" argument, if
  any, is ignored.

* If a specific errorfile is defined, with an "errorfile" argument, the
  corresponding file, containing a full HTTP response, is returned. Only the
  "status" argument is considered. It must be one of the status code handled
  by HAProxy (200, 400, 403, 404, 405, 408, 410, 413, 425, 429, 500, 501,
  502, 503, and 504). The "content-type" argument, if any, is ignored.

* If an http-errors section is defined, with an "errorfiles" argument, the
  corresponding file in the specified http-errors section, containing a full
  HTTP response, is returned. Only the "status" argument is considered. It
  must be one of the status code handled by HAProxy (200, 400, 403, 404, 405,
  408, 410, 413, 425, 429, 500, 501, 502, 503, and 504). The "content-type"
  argument, if any, is ignored.

* If a "file" or a "lf-file" argument is specified, the file's content is
  used as the response payload. If the file is not empty, its content-type
  must be set as argument to "content-type". Otherwise, any "content-type"
  argument is ignored. With a "lf-file" argument, the file's content is
  evaluated as a log-format string. With a "file" argument, it is considered
  as a raw content.

* If a "string" or "lf-string" argument is specified, the defined string is
  used as the response payload. The content-type must always be set as
  argument to "content-type". With a "lf-string" argument, the string is
  evaluated as a log-format string. With a "string" argument, it is
  considered as a raw string.

When the response is not based on an errorfile, it is possible to append HTTP
header fields to the response using "hdr" arguments. Otherwise, all "hdr"
arguments are ignored. For each one, the header name is specified in <name>
and its value is defined by <fmt> which follows the log-format rules.

Note that the generated response must be smaller than a buffer. And to avoid
any warning, when an errorfile or a raw file is loaded, the buffer space
reserved for the headers rewriting should also be free.

No further "http-request" rules are evaluated.
Example:
http-request return errorfile /etc/haproxy/errorfiles/200.http \
    if { path /ping }

http-request return content-type image/x-icon file /var/www/favicon.ico  \
    if { path /favicon.ico }

http-request return status 403 content-type text/plain    \
    lf-string "Access denied. IP %[src] is blacklisted."  \
    if { src -f /etc/haproxy/blacklist.lst }
http-request sc-inc-gpc0(<sc-id>) [ { if | unless } <condition> ]
http-request sc-inc-gpc1(<sc-id>) [ { if | unless } <condition> ]
This actions increments the GPC0 or GPC1 counter according with the sticky
counter designated by <sc-id>. If an error occurs, this action silently fails
and the actions evaluation continues.
http-request sc-set-gpt0(<sc-id>) { <int> | <expr> } [ { if | unless } <condition> ]
This action sets the 32-bit unsigned GPT0 tag according to the sticky counter
designated by <sc-id> and the value of <int>/<expr>. The expected result is a
boolean. If an error occurs, this action silently fails and the actions
evaluation continues.
http-request set-dst <expr> [ { if | unless } <condition> ]
This is used to set the destination IP address to the value of specified
expression. Useful when a proxy in front of HAProxy rewrites destination IP,
but provides the correct IP in a HTTP header; or you want to mask the IP for
privacy. If you want to connect to the new address/port, use '0.0.0.0:0' as a
server address in the backend.
Arguments:
<expr>  Is a standard HAProxy expression formed by a sample-fetch followed
        by some converters.
Example:
http-request set-dst hdr(x-dst)
http-request set-dst dst,ipmask(24)
When possible, set-dst preserves the original destination port as long as the
address family allows it, otherwise the destination port is set to 0.
http-request set-dst-port <expr> [ { if | unless } <condition> ]
This is used to set the destination port address to the value of specified
expression. If you want to connect to the new address/port, use '0.0.0.0:0'
as a server address in the backend.
Arguments:
<expr>  Is a standard HAProxy expression formed by a sample-fetch
        followed by some converters.
Example:
http-request set-dst-port hdr(x-port)
http-request set-dst-port int(4000)
When possible, set-dst-port preserves the original destination address as
long as the address family supports a port, otherwise it forces the
destination address to IPv4 "0.0.0.0" before rewriting the port.
http-request set-header <name> <fmt> [ { if | unless } <condition> ]
This does the same as "http-request add-header" except that the header name
is first removed if it existed. This is useful when passing security
information to the server, where the header must not be manipulated by
external users. Note that the new value is computed before the removal so it
is possible to concatenate a value to an existing header.
Example:
http-request set-header X-Haproxy-Current-Date %T
http-request set-header X-SSL                  %[ssl_fc]
http-request set-header X-SSL-Session_ID       %[ssl_fc_session_id,hex]
http-request set-header X-SSL-Client-Verify    %[ssl_c_verify]
http-request set-header X-SSL-Client-DN        %{+Q}[ssl_c_s_dn]
http-request set-header X-SSL-Client-CN        %{+Q}[ssl_c_s_dn(cn)]
http-request set-header X-SSL-Issuer           %{+Q}[ssl_c_i_dn]
http-request set-header X-SSL-Client-NotBefore %{+Q}[ssl_c_notbefore]
http-request set-header X-SSL-Client-NotAfter  %{+Q}[ssl_c_notafter]
http-request set-log-level <level> [ { if | unless } <condition> ]
This is used to change the log level of the current request when a certain
condition is met. Valid levels are the 8 syslog levels (see the "log"
keyword) plus the special level "silent" which disables logging for this
request. This rule is not final so the last matching rule wins. This rule
can be useful to disable health checks coming from another equipment.
http-request set-map(<file-name>) <key fmt> <value fmt> [ { if | unless } <condition> ]
This is used to add a new entry into a MAP. The MAP must be loaded from a
file (even a dummy empty file). The file name of the MAP to be updated is
passed between parentheses. It takes 2 arguments: <key fmt>, which follows
log-format rules, used to collect MAP key, and <value fmt>, which follows
log-format rules, used to collect content for the new entry.
It performs a lookup in the MAP before insertion, to avoid duplicated (or
more) values. This lookup is done by a linear search and can be expensive
with large lists! It is the equivalent of the "set map" command from the
stats socket, but can be triggered by an HTTP request.
http-request set-mark <mark> [ { if | unless } <condition> ]
This is used to set the Netfilter MARK on all packets sent to the client to
the value passed in <mark> on platforms which support it. This value is an
unsigned 32 bit value which can be matched by netfilter and by the routing
table. It can be expressed both in decimal or hexadecimal format (prefixed by
"0x"). This can be useful to force certain packets to take a different route
(for example a cheaper network path for bulk downloads). This works on Linux
kernels 2.6.32 and above and requires admin privileges.
http-request set-method <fmt> [ { if | unless } <condition> ]
This rewrites the request method with the result of the evaluation of format
string <fmt>. There should be very few valid reasons for having to do so as
this is more likely to break something than to fix it.
http-request set-nice <nice> [ { if | unless } <condition> ]
This sets the "nice" factor of the current request being processed. It only
has effect against the other requests being processed at the same time.
The default value is 0, unless altered by the "nice" setting on the "bind"
line. The accepted range is -1024..1024. The higher the value, the nicest
the request will be. Lower values will make the request more important than
other ones. This can be useful to improve the speed of some requests, or
lower the priority of non-important requests. Using this setting without
prior experimentation can cause some major slowdown.
http-request set-path <fmt> [ { if | unless } <condition> ]
This rewrites the request path with the result of the evaluation of format
string <fmt>. The query string, if any, is left intact. If a scheme and
authority is found before the path, they are left intact as well. If the
request doesn't have a path ("*"), this one is replaced with the format.
This can be used to prepend a directory component in front of a path for
example. See also "http-request set-query" and "http-request set-uri".
Example :
# prepend the host name before the path
http-request set-path /%[hdr(host)]%[path]
http-request set-pathq <fmt> [ { if | unless } <condition> ]
This does the same as "http-request set-path" except that the query-string is
also rewritten. It may be used to remove the query-string, including the
question mark (it is not possible using "http-request set-query").
http-request set-priority-class <expr> [ { if | unless } <condition> ]
This is used to set the queue priority class of the current request.
The value must be a sample expression which converts to an integer in the
range -2047..2047. Results outside this range will be truncated.
The priority class determines the order in which queued requests are
processed. Lower values have higher priority.
http-request set-priority-offset <expr> [ { if | unless } <condition> ]
This is used to set the queue priority timestamp offset of the current
request. The value must be a sample expression which converts to an integer
in the range -524287..524287. Results outside this range will be truncated.
When a request is queued, it is ordered first by the priority class, then by
the current timestamp adjusted by the given offset in milliseconds. Lower
values have higher priority.
Note that the resulting timestamp is is only tracked with enough precision
for 524,287ms (8m44s287ms). If the request is queued long enough to where the
adjusted timestamp exceeds this value, it will be misidentified as highest
priority. Thus it is important to set "timeout queue" to a value, where when
combined with the offset, does not exceed this limit.
http-request set-query <fmt> [ { if | unless } <condition> ]
This rewrites the request's query string which appears after the first
question mark ("?") with the result of the evaluation of format string <fmt>.
The part prior to the question mark is left intact. If the request doesn't
contain a question mark and the new value is not empty, then one is added at
the end of the URI, followed by the new value. If a question mark was
present, it will never be removed even if the value is empty. This can be
used to add or remove parameters from the query string.

See also "http-request set-query" and "http-request set-uri".
Example:
# replace "%3D" with "=" in the query string
http-request set-query %[query,regsub(%3D,=,g)]
http-request set-src <expr> [ { if | unless } <condition> ]
This is used to set the source IP address to the value of specified
expression. Useful when a proxy in front of HAProxy rewrites source IP, but
provides the correct IP in a HTTP header; or you want to mask source IP for
privacy. All subsequent calls to "src" fetch will return this value
(see example).
Arguments :
<expr>  Is a standard HAProxy expression formed by a sample-fetch followed
        by some converters.
See also "option forwardfor".
Example:
http-request set-src hdr(x-forwarded-for)
http-request set-src src,ipmask(24)

# After the masking this will track connections
# based on the IP address with the last byte zeroed out.
http-request track-sc0 src
When possible, set-src preserves the original source port as long as the
address family allows it, otherwise the source port is set to 0.
http-request set-src-port <expr> [ { if | unless } <condition> ]
This is used to set the source port address to the value of specified
expression.
Arguments:
<expr>  Is a standard HAProxy expression formed by a sample-fetch followed
        by some converters.
Example:
http-request set-src-port hdr(x-port)
http-request set-src-port int(4000)
When possible, set-src-port preserves the original source address as long as
the address family supports a port, otherwise it forces the source address to
IPv4 "0.0.0.0" before rewriting the port.
http-request set-timeout { server | tunnel } { <timeout> | <expr> } [ { if | unless } <condition> ]
This action overrides the specified "server" or "tunnel" timeout for the
current stream only. The timeout can be specified in millisecond or with any
other unit if the number is suffixed by the unit as explained at the top of
this document. It is also possible to write an expression which must returns
a number interpreted as a timeout in millisecond.

Note that the server/tunnel timeouts are only relevant on the backend side
and thus this rule is only available for the proxies with backend
capabilities. Also the timeout value must be non-null to obtain the expected
results.
Example:
http-request set-timeout tunnel 5s
http-request set-timeout server req.hdr(host),map_int(host.lst)
http-request set-tos <tos> [ { if | unless } <condition> ]
This is used to set the TOS or DSCP field value of packets sent to the client
to the value passed in <tos> on platforms which support this. This value
represents the whole 8 bits of the IP TOS field, and can be expressed both in
decimal or hexadecimal format (prefixed by "0x"). Note that only the 6 higher
bits are used in DSCP or TOS, and the two lower bits are always 0. This can
be used to adjust some routing behavior on border routers based on some
information from the request.

See RFC 2474, 2597, 3260 and 4594 for more information.
http-request set-uri <fmt> [ { if | unless } <condition> ]
This rewrites the request URI with the result of the evaluation of format
string <fmt>. The scheme, authority, path and query string are all replaced
at once. This can be used to rewrite hosts in front of proxies, or to perform
complex modifications to the URI such as moving parts between the path and
the query string. If an absolute URI is set, it will be sent as is to
HTTP/1.1 servers. If it is not the desired behavior, the host, the path
and/or the query string should be set separately.
See also "http-request set-path" and "http-request set-query".
http-request set-var(<var-name>) <expr> [ { if | unless } <condition> ]
This is used to set the contents of a variable. The variable is declared
inline.
Arguments:
<var-name>  The name of the variable starts with an indication about its
            scope. The scopes allowed are:
              "proc" : the variable is shared with the whole process
              "sess" : the variable is shared with the whole session
              "txn"  : the variable is shared with the transaction
                       (request and response)
              "req"  : the variable is shared only during request
                       processing
              "res"  : the variable is shared only during response
                       processing
            This prefix is followed by a name. The separator is a '.'.
            The name may only contain characters 'a-z', 'A-Z', '0-9'
            and '_'.

<expr>      Is a standard HAProxy expression formed by a sample-fetch
            followed by some converters.
Example:
http-request set-var(req.my_var) req.fhdr(user-agent),lower
http-request send-spoe-group <engine-name> <group-name> [ { if | unless } <condition> ]
This action is used to trigger sending of a group of SPOE messages. To do so,
the SPOE engine used to send messages must be defined, as well as the SPOE
group to send. Of course, the SPOE engine must refer to an existing SPOE
filter. If not engine name is provided on the SPOE filter line, the SPOE
agent name must be used.
Arguments:
<engine-name>  The SPOE engine name.

<group-name>   The SPOE group name as specified in the engine
               configuration.
http-request silent-drop [ { if | unless } <condition> ]
This stops the evaluation of the rules and makes the client-facing connection
suddenly disappear using a system-dependent way that tries to prevent the
client from being notified. The effect it then that the client still sees an
established connection while there's none on HAProxy. The purpose is to
achieve a comparable effect to "tarpit" except that it doesn't use any local
resource at all on the machine running HAProxy. It can resist much higher
loads than "tarpit", and slow down stronger attackers. It is important to
understand the impact of using this mechanism. All stateful equipment placed
between the client and HAProxy (firewalls, proxies, load balancers) will also
keep the established connection for a long time and may suffer from this
action.
On modern Linux systems running with enough privileges, the TCP_REPAIR socket
option is used to block the emission of a TCP reset. On other systems, the
socket's TTL is reduced to 1 so that the TCP reset doesn't pass the first
router, though it's still delivered to local networks. Do not use it unless
you fully understand how it works.
This enables or disables the strict rewriting mode for following rules. It
does not affect rules declared before it and it is only applicable on rules
performing a rewrite on the requests. When the strict mode is enabled, any
rewrite failure triggers an internal error. Otherwise, such errors are
silently ignored. The purpose of the strict rewriting mode is to make some
rewrites optional while others must be performed to continue the request
processing.

By default, the strict rewriting mode is enabled. Its value is also reset
when a ruleset evaluation ends. So, for instance, if you change the mode on
the frontend, the default mode is restored when HAProxy starts the backend
rules evaluation.
http-request tarpit [deny_status <status>] [ { if | unless } <condition> ]
http-request tarpit [ { status | deny_status } <code>] [content-type <type>] [ { default-errorfiles | errorfile <file> | errorfiles <name> | file <file> | lf-file <file> | string <str> | lf-string <fmt> } ] [ hdr <name> <fmt> ]* [ { if | unless } <condition> ]
This stops the evaluation of the rules and immediately blocks the request
without responding for a delay specified by "timeout tarpit" or
"timeout connect" if the former is not set. After that delay, if the client
is still connected, a response is returned so that the client does not
suspect it has been tarpitted. Logs will report the flags "PT". The goal of
the tarpit rule is to slow down robots during an attack when they're limited
on the number of concurrent requests. It can be very efficient against very
dumb robots, and will significantly reduce the load on firewalls compared to
a "deny" rule. But when facing "correctly" developed robots, it can make
things worse by forcing HAProxy and the front firewall to support insane
number of concurrent connections. By default an HTTP error 500 is returned.
But the response may be customized using same syntax than
"http-request return" rules. Thus, see "http-request return" for details.
For compatibility purpose, when no argument is defined, or only "deny_status",
the argument "default-errorfiles" is implied. It means
"http-request tarpit [deny_status <status>]" is an alias of
"http-request tarpit [status <status>] default-errorfiles".
No further "http-request" rules are evaluated.
See also "http-request return" and "http-request silent-drop".
http-request track-sc0 <key> [table <table>] [ { if | unless } <condition> ]
http-request track-sc1 <key> [table <table>] [ { if | unless } <condition> ]
http-request track-sc2 <key> [table <table>] [ { if | unless } <condition> ]
This enables tracking of sticky counters from current request. These rules do
not stop evaluation and do not change default action. The number of counters
that may be simultaneously tracked by the same connection is set in
MAX_SESS_STKCTR at build time (reported in haproxy -vv) which defaults to 3,
so the track-sc number is between 0 and (MAX_SESS_STKCTR-1). The first
"track-sc0" rule executed enables tracking of the counters of the specified
table as the first set. The first "track-sc1" rule executed enables tracking
of the counters of the specified table as the second set. The first
"track-sc2" rule executed enables tracking of the counters of the specified
table as the third set. It is a recommended practice to use the first set of
counters for the per-frontend counters and the second set for the per-backend
ones. But this is just a guideline, all may be used everywhere.
Arguments :
<key>   is mandatory, and is a sample expression rule as described in
        section 7.3. It describes what elements of the incoming request or
        connection will be analyzed, extracted, combined, and used to
        select which table entry to update the counters.

<table> is an optional table to be used instead of the default one, which
        is the stick-table declared in the current proxy. All the counters
        for the matches and updates for the key will then be performed in
        that table until the session ends.
Once a "track-sc*" rule is executed, the key is looked up in the table and if
it is not found, an entry is allocated for it. Then a pointer to that entry
is kept during all the session's life, and this entry's counters are updated
as often as possible, every time the session's counters are updated, and also
systematically when the session ends. Counters are only updated for events
that happen after the tracking has been started. As an exception, connection
counters and request counters are systematically updated so that they reflect
useful information.

If the entry tracks concurrent connection counters, one connection is counted
for as long as the entry is tracked, and the entry will not expire during
that time. Tracking counters also provides a performance advantage over just
checking the keys, because only one table lookup is performed for all ACL
checks that make use of it.
http-request unset-var(<var-name>) [ { if | unless } <condition> ]
This is used to unset a variable. See above for details about <var-name>.
Example:
http-request unset-var(req.my_var)
http-request use-service <service-name> [ { if | unless } <condition> ]
This directive executes the configured HTTP service to reply to the request
and stops the evaluation of the rules. An HTTP service may choose to reply by
sending any valid HTTP response or it may immediately close the connection
without sending any response. Outside natives services, for instance the
Prometheus exporter, it is possible to write your own services in Lua. No
further "http-request" rules are evaluated.
Arguments :
<service-name>  is mandatory. It is the service to call
Example:
http-request use-service prometheus-exporter if { path /metrics }
http-request wait-for-body time <time> [ at-least <bytes> ] [ { if | unless } <condition> ]
This will delay the processing of the request or response until one of the
following conditions occurs:
- The full request body is received, in which case processing proceeds
  normally.
- <bytes> bytes have been received, when the "at-least" argument is given and
  <bytes> is non-zero, in which case processing proceeds normally.
- The request buffer is full, in which case processing proceeds normally. The
  size of this buffer is determined by the "tune.bufsize" option.
- The request has been waiting for more than <time> milliseconds. In this
  case HAProxy will respond with a 408 "Request Timeout" error to the client
  and stop processing the request. Note that if any of the other conditions
  happens first, this timeout will not occur even if the full body has
  not yet been recieved.

This action may be used as a replacement for "option http-buffer-request".
Arguments :
<time>    is mandatory. It is the maximum time to wait for the body. It
          follows the HAProxy time format and is expressed in milliseconds.

<bytes>   is optional. It is the minimum payload size to receive to stop to
          wait. It follows the HAProxy size format and is expressed in
          bytes. A value of 0 (the default) means no limit.
Example:
http-request wait-for-body time 1s at-least 1k if METH_POST
http-request wait-for-handshake [ { if | unless } <condition> ]
This will delay the processing of the request until the SSL handshake
happened. This is mostly useful to delay processing early data until we're
sure they are valid.
http-response <action> <options...> [ { if | unless } <condition> ]
Access control for Layer 7 responses

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
yes
yes
The http-response statement defines a set of rules which apply to layer 7
processing. The rules are evaluated in their declaration order when they are
met in a frontend, listen or backend section. Any rule may optionally be
followed by an ACL-based condition, in which case it will only be evaluated
if the condition is true. Since these rules apply on responses, the backend
rules are applied first, followed by the frontend's rules.

The first keyword is the rule's action. The supported actions are described
below.

There is no limit to the number of http-response statements per instance.
Example:
acl key_acl res.hdr(X-Acl-Key) -m found

acl myhost hdr(Host) -f myhost.lst

http-response add-acl(myhost.lst) %[res.hdr(X-Acl-Key)] if key_acl
http-response del-acl(myhost.lst) %[res.hdr(X-Acl-Key)] if key_acl
Example:
acl value  res.hdr(X-Value) -m found

use_backend bk_appli if { hdr(Host),map_str(map.lst) -m found }

http-response set-map(map.lst) %[src] %[res.hdr(X-Value)] if value
http-response del-map(map.lst) %[src]                     if ! value
http-response add-acl(<file-name>) <key fmt> [ { if | unless } <condition> ]
This is used to add a new entry into an ACL. The ACL must be loaded from a
file (even a dummy empty file). The file name of the ACL to be updated is
passed between parentheses. It takes one argument: <key fmt>, which follows
log-format rules, to collect content of the new entry. It performs a lookup
in the ACL before insertion, to avoid duplicated (or more) values.
This lookup is done by a linear search and can be expensive with large lists!
It is the equivalent of the "add acl" command from the stats socket, but can
be triggered by an HTTP response.
http-response add-header <name> <fmt> [ { if | unless } <condition> ]
This appends an HTTP header field whose name is specified in <name> and whose
value is defined by <fmt> which follows the log-format rules (see Custom Log
Format in section 8.2.4). This may be used to send a cookie to a client for
example, or to pass some internal information.
This rule is not final, so it is possible to add other similar rules.
Note that header addition is performed immediately, so one rule might reuse
the resulting header from a previous rule.
http-response allow [ { if | unless } <condition> ]
This stops the evaluation of the rules and lets the response pass the check.
No further "http-response" rules are evaluated for the current section.
http-response cache-store <name> [ { if | unless } <condition> ]
See section 6.2 about cache setup.
http-response capture <sample> id <id> [ { if | unless } <condition> ]
This captures sample expression <sample> from the response buffer, and
converts it to a string. The resulting string is stored into the next request
"capture" slot, so it will possibly appear next to some captured HTTP
headers. It will then automatically appear in the logs, and it will be
possible to extract it using sample fetch rules to feed it into headers or
anything. Please check section 7.3 (Fetching samples) and
"capture response header" for more information.

The keyword "id" is the id of the capture slot which is used for storing the
string. The capture slot must be defined in an associated frontend.
This is useful to run captures in backends. The slot id can be declared by a
previous directive "http-response capture" or with the "declare capture"
keyword.

When using this action in a backend, double check that the relevant
frontend(s) have the required capture slots otherwise, this rule will be
ignored at run time. This can't be detected at configuration parsing time
due to HAProxy's ability to dynamically resolve backend name at runtime.
http-response del-acl(<file-name>) <key fmt> [ { if | unless } <condition> ]
This is used to delete an entry from an ACL. The ACL must be loaded from a
file (even a dummy empty file). The file name of the ACL to be updated is
passed between parentheses. It takes one argument: <key fmt>, which follows
log-format rules, to collect content of the entry to delete.
It is the equivalent of the "del acl" command from the stats socket, but can
be triggered by an HTTP response.
http-response del-header <name> [ -m <meth> ] [ { if | unless } <condition> ]
This removes all HTTP header fields whose name is specified in <name>. <meth>
is the matching method, applied on the header name. Supported matching methods
are "str" (exact match), "beg" (prefix match), "end" (suffix match), "sub"
(substring match) and "reg" (regex match). If not specified, exact matching
method is used.
http-response del-map(<file-name>) <key fmt> [ { if | unless } <condition> ]
This is used to delete an entry from a MAP. The MAP must be loaded from a
file (even a dummy empty file). The file name of the MAP to be updated is
passed between parentheses. It takes one argument: <key fmt>, which follows
log-format rules, to collect content of the entry to delete.
It takes one argument: "file name" It is the equivalent of the "del map"
command from the stats socket, but can be triggered by an HTTP response.
http-response deny [deny_status <status>] [ { if | unless } <condition> ]
http-response deny [ { status | deny_status } <code>] [content-type <type>] [ { default-errorfiles | errorfile <file> | errorfiles <name> | file <file> | lf-file <file> | string <str> | lf-string <fmt> } ] [ hdr <name> <fmt> ]* [ { if | unless } <condition> ]
This stops the evaluation of the rules and immediately rejects the response.
By default an HTTP 502 error is returned. But the response may be customized
using same syntax than "http-response return" rules. Thus, see
"http-response return" for details. For compatibility purpose, when no
argument is defined, or only "deny_status", the argument "default-errorfiles"
is implied. It means "http-response deny [deny_status <status>]" is an alias
of "http-response deny [status <status>] default-errorfiles".
No further "http-response" rules are evaluated.
See also "http-response return".
http-response redirect <rule> [ { if | unless } <condition> ]
This performs an HTTP redirection based on a redirect rule.
This supports a format string similarly to "http-request redirect" rules,
with the exception that only the "location" type of redirect is possible on
the response. See the "redirect" keyword for the rule's syntax. When a
redirect rule is applied during a response, connections to the server are
closed so that no data can be forwarded from the server to the client.
http-response replace-header <name> <regex-match> <replace-fmt> [ { if | unless } <condition> ]
This works like "http-request replace-header" except that it works on the
server's response instead of the client's request.
Example:
http-response replace-header Set-Cookie (C=[^;]*);(.*) \1;ip=%bi;\2

# applied to:
Set-Cookie: C=1; expires=Tue, 14-Jun-2016 01:40:45 GMT

# outputs:
Set-Cookie: C=1;ip=192.168.1.20; expires=Tue, 14-Jun-2016 01:40:45 GMT

# assuming the backend IP is 192.168.1.20.
http-response replace-value <name> <regex-match> <replace-fmt> [ { if | unless } <condition> ]
This works like "http-request replace-value" except that it works on the
server's response instead of the client's request.
Example:
http-response replace-value Cache-control ^public$ private

# applied to:
Cache-Control: max-age=3600, public

# outputs:
Cache-Control: max-age=3600, private
http-response return [status <code>] [content-type <type>] [ { default-errorfiles | errorfile <file> | errorfiles <name> | file <file> | lf-file <file> | string <str> | lf-string <fmt> } ] [ hdr <name> <value> ]* [ { if | unless } <condition> ]
This stops the evaluation of the rules and immediately returns a response. The
default status code used for the response is 200. It can be optionally
specified as an arguments to "status". The response content-type may also be
specified as an argument to "content-type". Finally the response itself may
be defined. If can be a full HTTP response specifying the errorfile to use,
or the response payload specifying the file or the string to use. These rules
are followed to create the response :

* If neither the errorfile nor the payload to use is defined, a dummy
  response is returned. Only the "status" argument is considered. It can be
  any code in the range [200, 599]. The "content-type" argument, if any, is
  ignored.

* If "default-errorfiles" argument is set, the proxy's errorfiles are
  considered.  If the "status" argument is defined, it must be one of the
  status code handled by HAProxy (200, 400, 403, 404, 405, 408, 410, 413,
  425, 429, 500, 501, 502, 503, and 504). The "content-type" argument, if
  any, is ignored.

* If a specific errorfile is defined, with an "errorfile" argument, the
  corresponding file, containing a full HTTP response, is returned. Only the
  "status" argument is considered. It must be one of the status code handled
  by HAProxy (200, 400, 403, 404, 405, 408, 410, 413, 425, 429, 500, 501,
  502, 503, and 504). The "content-type" argument, if any, is ignored.

* If an http-errors section is defined, with an "errorfiles" argument, the
  corresponding file in the specified http-errors section, containing a full
  HTTP response, is returned. Only the "status" argument is considered. It
  must be one of the status code handled by HAProxy (200, 400, 403, 404, 405,
  408, 410, 413, 425, 429, 500, 501, 502, 503, and 504). The "content-type"
  argument, if any, is ignored.

* If a "file" or a "lf-file" argument is specified, the file's content is
  used as the response payload. If the file is not empty, its content-type
  must be set as argument to "content-type". Otherwise, any "content-type"
  argument is ignored. With a "lf-file" argument, the file's content is
  evaluated as a log-format string. With a "file" argument, it is considered
  as a raw content.

* If a "string" or "lf-string" argument is specified, the defined string is
  used as the response payload. The content-type must always be set as
  argument to "content-type". With a "lf-string" argument, the string is
  evaluated as a log-format string. With a "string" argument, it is
  considered as a raw string.

When the response is not based an errorfile, it is possible to appends HTTP
header fields to the response using "hdr" arguments. Otherwise, all "hdr"
arguments are ignored. For each one, the header name is specified in <name>
and its value is defined by <fmt> which follows the log-format rules.

Note that the generated response must be smaller than a buffer. And to avoid
any warning, when an errorfile or a raw file is loaded, the buffer space
reserved to the headers rewriting should also be free.

No further "http-response" rules are evaluated.
Example:
http-response return errorfile /etc/haproxy/errorfiles/200.http \
    if { status eq 404 }

http-response return content-type text/plain  \
    string "This is the end !"                \
    if { status eq 500 }
http-response sc-inc-gpc0(<sc-id>) [ { if | unless } <condition> ]
http-response sc-inc-gpc1(<sc-id>) [ { if | unless } <condition> ]
This action increments the GPC0 or GPC1 counter according with the sticky
counter designated by <sc-id>. If an error occurs, this action silently fails
and the actions evaluation continues.
http-response sc-set-gpt0(<sc-id>) { <int> | <expr> } [ { if | unless } <condition> ]
This action sets the 32-bit unsigned GPT0 tag according to the sticky counter
designated by <sc-id> and the value of <int>/<expr>. The expected result is a
boolean. If an error occurs, this action silently fails and the actions
evaluation continues.
http-response send-spoe-group <engine-name> <group-name> [ { if | unless } <condition> ]
This action is used to trigger sending of a group of SPOE messages. To do so,
the SPOE engine used to send messages must be defined, as well as the SPOE
group to send. Of course, the SPOE engine must refer to an existing SPOE
filter. If not engine name is provided on the SPOE filter line, the SPOE
agent name must be used.
Arguments:
<engine-name>  The SPOE engine name.

<group-name>   The SPOE group name as specified in the engine
               configuration.
http-response set-header <name> <fmt> [ { if | unless } <condition> ]
This does the same as "add-header" except that the header name is first
removed if it existed. This is useful when passing security information to
the server, where the header must not be manipulated by external users.
http-response set-log-level <level> [ { if | unless } <condition> ]
This is used to change the log level of the current request when a certain
condition is met. Valid levels are the 8 syslog levels (see the "log"
keyword) plus the special level "silent" which disables logging for this
request. This rule is not final so the last matching rule wins. This rule can
be useful to disable health checks coming from another equipment.
http-response set-map(<file-name>) <key fmt> <value fmt>
This is used to add a new entry into a MAP. The MAP must be loaded from a
file (even a dummy empty file). The file name of the MAP to be updated is
passed between parentheses. It takes 2 arguments: <key fmt>, which follows
log-format rules, used to collect MAP key, and <value fmt>, which follows
log-format rules, used to collect content for the new entry. It performs a
lookup in the MAP before insertion, to avoid duplicated (or more) values.
This lookup is done by a linear search and can be expensive with large lists!
It is the equivalent of the "set map" command from the stats socket, but can
be triggered by an HTTP response.
http-response set-mark <mark> [ { if | unless } <condition> ]
This is used to set the Netfilter MARK on all packets sent to the client to
the value passed in <mark> on platforms which support it. This value is an
unsigned 32 bit value which can be matched by netfilter and by the routing
table. It can be expressed both in decimal or hexadecimal format (prefixed
by "0x"). This can be useful to force certain packets to take a different
route (for example a cheaper network path for bulk downloads). This works on
Linux kernels 2.6.32 and above and requires admin privileges.
http-response set-nice <nice> [ { if | unless } <condition> ]
This sets the "nice" factor of the current request being processed.
It only has effect against the other requests being processed at the same
time. The default value is 0, unless altered by the "nice" setting on the
"bind" line. The accepted range is -1024..1024. The higher the value, the
nicest the request will be. Lower values will make the request more important
than other ones. This can be useful to improve the speed of some requests, or
lower the priority of non-important requests. Using this setting without
prior experimentation can cause some major slowdown.
http-response set-status <status> [reason <str>] [ { if | unless } <condition> ]
This replaces the response status code with <status> which must be an integer
between 100 and 999. Optionally, a custom reason text can be provided defined
by <str>, or the default reason for the specified code will be used as a
fallback.
Example:
# return "431 Request Header Fields Too Large"
http-response set-status 431
# return "503 Slow Down", custom reason
http-response set-status 503 reason "Slow Down".
http-response set-tos <tos> [ { if | unless } <condition> ]
This is used to set the TOS or DSCP field value of packets sent to the client
to the value passed in <tos> on platforms which support this.
This value represents the whole 8 bits of the IP TOS field, and can be
expressed both in decimal or hexadecimal format (prefixed by "0x"). Note that
only the 6 higher bits are used in DSCP or TOS, and the two lower bits are
always 0. This can be used to adjust some routing behavior on border routers
based on some information from the request.

See RFC 2474, 2597, 3260 and 4594 for more information.
http-response set-var(<var-name>) <expr> [ { if | unless } <condition> ]
This is used to set the contents of a variable. The variable is declared
inline.
Arguments:
<var-name>  The name of the variable starts with an indication about its
            scope. The scopes allowed are:
              "proc" : the variable is shared with the whole process
              "sess" : the variable is shared with the whole session
              "txn"  : the variable is shared with the transaction
                       (request and response)
              "req"  : the variable is shared only during request
                       processing
              "res"  : the variable is shared only during response
                       processing
            This prefix is followed by a name. The separator is a '.'.
            The name may only contain characters 'a-z', 'A-Z', '0-9', '.'
            and '_'.

<expr>      Is a standard HAProxy expression formed by a sample-fetch
            followed by some converters.
Example:
http-response set-var(sess.last_redir) res.hdr(location)
http-response silent-drop [ { if | unless } <condition> ]
This stops the evaluation of the rules and makes the client-facing connection
suddenly disappear using a system-dependent way that tries to prevent the
client from being notified. The effect it then that the client still sees an
established connection while there's none on HAProxy. The purpose is to
achieve a comparable effect to "tarpit" except that it doesn't use any local
resource at all on the machine running HAProxy. It can resist much higher
loads than "tarpit", and slow down stronger attackers. It is important to
understand the impact of using this mechanism. All stateful equipment placed
between the client and HAProxy (firewalls, proxies, load balancers) will also
keep the established connection for a long time and may suffer from this
action.
On modern Linux systems running with enough privileges, the TCP_REPAIR socket
option is used to block the emission of a TCP reset. On other systems, the
socket's TTL is reduced to 1 so that the TCP reset doesn't pass the first
router, though it's still delivered to local networks. Do not use it unless
you fully understand how it works.
This enables or disables the strict rewriting mode for following rules. It
does not affect rules declared before it and it is only applicable on rules
performing a rewrite on the responses. When the strict mode is enabled, any
rewrite failure triggers an internal error. Otherwise, such errors are
silently ignored. The purpose of the strict rewriting mode is to make some
rewrites optional while others must be performed to continue the response
processing.

By default, the strict rewriting mode is enabled. Its value is also reset
when a ruleset evaluation ends. So, for instance, if you change the mode on
the backend, the default mode is restored when HAProxy starts the frontend
rules evaluation.
http-response track-sc0 <key> [table <table>] [ { if | unless } <condition> ]
http-response track-sc1 <key> [table <table>] [ { if | unless } <condition> ]
http-response track-sc2 <key> [table <table>] [ { if | unless } <condition> ]
This enables tracking of sticky counters from current response. Please refer
to "http-request track-sc" for a complete description. The only difference
from "http-request track-sc" is the <key> sample expression can only make use
of samples in response (e.g. res.*, status etc.) and samples below Layer 6
(e.g. SSL-related samples, see section 7.3.4). If the sample is not
supported, HAProxy will fail and warn while parsing the config.
http-response unset-var(<var-name>) [ { if | unless } <condition> ]
This is used to unset a variable. See "http-response set-var" for details
about <var-name>.
Example:
http-response unset-var(sess.last_redir)
http-response wait-for-body time <time> [ at-least <bytes> ] [ { if | unless } <condition> ]
This will delay the processing of the response waiting for the payload for at
most <time> milliseconds. if "at-least" argument is specified, HAProxy stops
to wait the payload when the first <bytes> bytes are received. 0 means no
limit, it is the default value. Regardless the "at-least" argument value,
HAProxy stops to wait if the whole payload is received or if the response
buffer is full.
Arguments :
<time>    is mandatory. It is the maximum time to wait for the body. It
          follows the HAProxy time format and is expressed in milliseconds.

<bytes>   is optional. It is the minimum payload size to receive to stop to
          wait. It follows the HAProxy size format and is expressed in
          bytes.
Example:
http-response wait-for-body time 1s at-least 10k
http-reuse { never | safe | aggressive | always }
Declare how idle HTTP connections may be shared between requests

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
By default, a connection established between HAProxy and the backend server
which is considered safe for reuse is moved back to the server's idle
connections pool so that any other request can make use of it. This is the
"safe" strategy below.

The argument indicates the desired connection reuse strategy :

  - "never"  : idle connections are never shared between sessions. This mode
               may be enforced to cancel a different strategy inherited from
               a defaults section or for troubleshooting. For example, if an
               old bogus application considers that multiple requests over
               the same connection come from the same client and it is not
               possible to fix the application, it may be desirable to
               disable connection sharing in a single backend. An example of
               such an application could be an old HAProxy using cookie
               insertion in tunnel mode and not checking any request past the
               first one.

  - "safe"   : this is the default and the recommended strategy. The first
               request of a session is always sent over its own connection,
               and only subsequent requests may be dispatched over other
               existing connections. This ensures that in case the server
               closes the connection when the request is being sent, the
               browser can decide to silently retry it. Since it is exactly
               equivalent to regular keep-alive, there should be no side
               effects. There is also a special handling for the connections
               using protocols subject to Head-of-line blocking (backend with
               h2 or fcgi). In this case, when at least one stream is
               processed, the used connection is reserved to handle streams
               of the same session. When no more streams are processed, the
               connection is released and can be reused.

  - "aggressive" : this mode may be useful in webservices environments where
               all servers are not necessarily known and where it would be
               appreciable to deliver most first requests over existing
               connections. In this case, first requests are only delivered
               over existing connections that have been reused at least once,
               proving that the server correctly supports connection reuse.
               It should only be used when it's sure that the client can
               retry a failed request once in a while and where the benefit
               of aggressive connection reuse significantly outweighs the
               downsides of rare connection failures.

  - "always" : this mode is only recommended when the path to the server is
               known for never breaking existing connections quickly after
               releasing them. It allows the first request of a session to be
               sent to an existing connection. This can provide a significant
               performance increase over the "safe" strategy when the backend
               is a cache farm, since such components tend to show a
               consistent behavior and will benefit from the connection
               sharing. It is recommended that the "http-keep-alive" timeout
               remains low in this mode so that no dead connections remain
               usable. In most cases, this will lead to the same performance
               gains as "aggressive" but with more risks. It should only be
               used when it improves the situation over "aggressive".

When http connection sharing is enabled, a great care is taken to respect the
connection properties and compatibility. Indeed, some properties are specific
and it is not possibly to reuse it blindly. Those are the SSL SNI, source
and destination address and proxy protocol block. A connection is reused only
if it shares the same set of properties with the request.

Also note that connections with certain bogus authentication schemes (relying
on the connection) like NTLM are marked private if possible and never shared.
This won't be the case however when using a protocol with multiplexing
abilities and using reuse mode level value greater than the default "safe"
strategy as in this case nothing prevents the connection from being already
shared.

A connection pool is involved and configurable with "pool-max-conn".

Note: connection reuse improves the accuracy of the "server maxconn" setting,
because almost no new connection will be established while idle connections
remain available. This is particularly true with the "always" strategy.

The rules to decide to keep an idle connection opened or to close it after
processing are also governed by the "tune.pool-low-fd-ratio" (default: 20%)
and "tune.pool-high-fd-ratio" (default: 25%). These correspond to the
percentage of total file descriptors spent in idle connections above which
haproxy will respectively refrain from keeping a connection opened after a
response, and actively kill idle connections. Some setups using a very high
ratio of idle connections, either because of too low a global "maxconn", or
due to a lot of HTTP/2 or HTTP/3 traffic on the frontend (few connections)
but HTTP/1 connections on the backend, may observe a lower reuse rate because
too few connections are kept open. It may be desirable in this case to adjust
such thresholds or simply to increase the global "maxconn" value.

Similarly, when thread groups are explicitly enabled, it is important to
understand that idle connections are only usable between threads from a same
group. As such it may happen that unfair load between groups leads to more
idle connections being needed, causing a lower reuse rate. The same solution
may then be applied (increase global "maxconn" or increase pool ratios).
Add the server name to a request. Use the header string given by <header>

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments :
<header>  The header string to use to send the server name
The "http-send-name-header" statement causes the header field named <header>
to be set to the name of the target server at the moment the request is about
to be sent on the wire. Any existing occurrences of this header are removed.
Upon retries and redispatches, the header field is updated to always reflect
the server being attempted to connect to. Given that this header is modified
very late in the connection setup, it may have unexpected effects on already
modified headers. For example using it with transport-level header such as
connection, content-length, transfer-encoding and so on will likely result in
invalid requests being sent to the server. Additionally it has been reported
that this directive is currently being used as a way to overwrite the Host
header field in outgoing requests; while this trick has been known to work
as a side effect of the feature for some time, it is not officially supported
and might possibly not work anymore in a future version depending on the
technical difficulties this feature induces. A long-term solution instead
consists in fixing the application which required this trick so that it binds
to the correct host name.
id <value>
Set a persistent ID to a proxy.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
yes
yes
Arguments : none
Set a persistent ID for the proxy. This ID must be unique and positive.
An unused ID will automatically be assigned if unset. The first assigned
value will be 1. This ID is currently only returned in statistics.
ignore-persist { if | unless } <condition>
Declare a condition to ignore persistence

May be used in sections :

defaultsfrontendlistenbackend
no
no
no
no
yes
yes
yes
yes
By default, when cookie persistence is enabled, every requests containing
the cookie are unconditionally persistent (assuming the target server is up
and running).

The "ignore-persist" statement allows one to declare various ACL-based
conditions which, when met, will cause a request to ignore persistence.
This is sometimes useful to load balance requests for static files, which
often don't require persistence. This can also be used to fully disable
persistence for a specific User-Agent (for example, some web crawler bots).

The persistence is ignored when an "if" condition is met, or unless an
"unless" condition is met.
Example:
acl url_static  path_beg         /static /images /img /css
acl url_static  path_end         .gif .png .jpg .css .js
ignore-persist  if url_static
load-server-state-from-file { global | local | none }
Allow seamless reload of HAProxy

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
This directive points HAProxy to a file where server state from previous
running process has been saved. That way, when starting up, before handling
traffic, the new process can apply old states to servers exactly has if no
reload occurred. The purpose of the "load-server-state-from-file" directive is
to tell HAProxy which file to use. For now, only 2 arguments to either prevent
loading state or load states from a file containing all backends and servers.
The state file can be generated by running the command "show servers state"
over the stats socket and redirect output.

The format of the file is versioned and is very specific. To understand it,
please read the documentation of the "show servers state" command (chapter
9.3 of Management Guide).
Arguments:
global     load the content of the file pointed by the global directive
           named "server-state-file".

local      load the content of the file pointed by the directive
           "server-state-file-name" if set. If not set, then the backend
           name is used as a file name.

none       don't load any stat for this backend
Notes:
  - server's IP address is preserved across reloads by default, but the
    order can be changed thanks to the server's "init-addr" setting. This
    means that an IP address change performed on the CLI at run time will
    be preserved, and that any change to the local resolver (e.g. /etc/hosts)
    will possibly not have any effect if the state file is in use.

  - server's weight is applied from previous running process unless it has
    has changed between previous and new configuration files.
Example:
Minimal configuration
global stats socket /tmp/socket server-state-file /tmp/server_state defaults load-server-state-from-file global backend bk server s1 127.0.0.1:22 check weight 11 server s2 127.0.0.1:22 check weight 12
Then one can run :

  socat /tmp/socket - <<< "show servers state" > /tmp/server_state

Content of the file /tmp/server_state would be like this:

  1
  # <field names skipped for the doc example>
  1 bk 1 s1 127.0.0.1 2 0 11 11 4 6 3 4 6 0 0
  1 bk 2 s2 127.0.0.1 2 0 12 12 4 6 3 4 6 0 0
Example:
Minimal configuration
global stats socket /tmp/socket server-state-base /etc/haproxy/states defaults load-server-state-from-file local backend bk server s1 127.0.0.1:22 check weight 11 server s2 127.0.0.1:22 check weight 12
Then one can run :

  socat /tmp/socket - <<< "show servers state bk" > /etc/haproxy/states/bk

Content of the file /etc/haproxy/states/bk would be like this:

  1
  # <field names skipped for the doc example>
  1 bk 1 s1 127.0.0.1 2 0 11 11 4 6 3 4 6 0 0
  1 bk 2 s2 127.0.0.1 2 0 12 12 4 6 3 4 6 0 0
log <address> [len <length>] [format <format>] [sample <ranges>:<sample_size>] <facility> [<level> [<minlevel>]]
Enable per-instance logging of events and traffic.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Prefix :
  no         should be used when the logger list must be flushed. For example,
             if you don't want to inherit from the default logger list. This
             prefix does not allow arguments.
Arguments :
global     should be used when the instance's logging parameters are the
           same as the global ones. This is the most common usage. "global"
           replaces <address>, <facility> and <level> with those of the log
           entries found in the "global" section. Only one "log global"
           statement may be used per instance, and this form takes no other
           parameter.

<address>  indicates where to send the logs. It takes the same format as
           for the "global" section's logs, and can be one of :

           - An IPv4 address optionally followed by a colon (':') and a UDP
             port. If no port is specified, 514 is used by default (the
             standard syslog port).

           - An IPv6 address followed by a colon (':') and optionally a UDP
             port. If no port is specified, 514 is used by default (the
             standard syslog port).

           - A filesystem path to a UNIX domain socket, keeping in mind
             considerations for chroot (be sure the path is accessible
             inside the chroot) and uid/gid (be sure the path is
             appropriately writable).

           - A file descriptor number in the form "fd@<number>", which may
             point to a pipe, terminal, or socket. In this case unbuffered
             logs are used and one writev() call per log is performed. This
             is a bit expensive but acceptable for most workloads. Messages
             sent this way will not be truncated but may be dropped, in
             which case the DroppedLogs counter will be incremented. The
             writev() call is atomic even on pipes for messages up to
             PIPE_BUF size, which POSIX recommends to be at least 512 and
             which is 4096 bytes on most modern operating systems. Any
             larger message may be interleaved with messages from other
             processes.  Exceptionally for debugging purposes the file
             descriptor may also be directed to a file, but doing so will
             significantly slow HAProxy down as non-blocking calls will be
             ignored. Also there will be no way to purge nor rotate this
             file without restarting the process. Note that the configured
             syslog format is preserved, so the output is suitable for use
             with a TCP syslog server. See also the "short" and "raw"
             formats below.

           - "stdout" / "stderr", which are respectively aliases for "fd@1"
             and "fd@2", see above.

           - A ring buffer in the form "ring@<name>", which will correspond
             to an in-memory ring buffer accessible over the CLI using the
             "show events" command, which will also list existing rings and
             their sizes. Such buffers are lost on reload or restart but
             when used as a complement this can help troubleshooting by
             having the logs instantly available.

           - An explicit stream address prefix such as "tcp@","tcp6@",
             "tcp4@" or "uxst@" will allocate an implicit ring buffer with
             a stream forward server targeting the given address.

           You may want to reference some environment variables in the
           address parameter, see section 2.3 about environment variables.

<length>   is an optional maximum line length. Log lines larger than this
           value will be truncated before being sent. The reason is that
           syslog servers act differently on log line length. All servers
           support the default value of 1024, but some servers simply drop
           larger lines while others do log them. If a server supports long
           lines, it may make sense to set this value here in order to avoid
           truncating long lines. Similarly, if a server drops long lines,
           it is preferable to truncate them before sending them. Accepted
           values are 80 to 65535 inclusive. The default value of 1024 is
           generally fine for all standard usages. Some specific cases of
           long captures or JSON-formatted logs may require larger values.

<ranges>   A list of comma-separated ranges to identify the logs to sample.
           This is used to balance the load of the logs to send to the log
           server. The limits of the ranges cannot be null. They are numbered
           from 1. The size or period (in number of logs) of the sample must
           be set with <sample_size> parameter.

<sample_size>
           The size of the sample in number of logs to consider when balancing
           their logging loads. It is used to balance the load of the logs to
           send to the syslog server. This size must be greater or equal to the
           maximum of the high limits of the ranges.
           (see also <ranges> parameter).

<format> is the log format used when generating syslog messages. It may be
         one of the following :

  local     Analog to rfc3164 syslog message format except that hostname
            field is stripped. This is the default.
            Note: option "log-send-hostname" switches the default to
            rfc3164.

  rfc3164   The RFC3164 syslog message format.
            (https://tools.ietf.org/html/rfc3164)

  rfc5424   The RFC5424 syslog message format.
            (https://tools.ietf.org/html/rfc5424)

  priority  A message containing only a level plus syslog facility between
            angle brackets such as '<63>', followed by the text. The PID,
            date, time, process name and system name are omitted. This is
            designed to be used with a local log server.

  short     A message containing only a level between angle brackets such as
            '<3>', followed by the text. The PID, date, time, process name
            and system name are omitted. This is designed to be used with a
            local log server. This format is compatible with what the
            systemd logger consumes.

  timed     A message containing only a level between angle brackets such as
            '<3>', followed by ISO date and by the text. The PID, process
            name and system name are omitted. This is designed to be
            used with a local log server.

  iso       A message containing only the ISO date, followed by the text.
            The PID, process name and system name are omitted. This is
            designed to be used with a local log server.

  raw       A message containing only the text. The level, PID, date, time,
            process name and system name are omitted. This is designed to
            be used in containers or during development, where the severity
            only depends on the file descriptor used (stdout/stderr).

<facility> must be one of the 24 standard syslog facilities :

               kern   user   mail   daemon auth   syslog lpr    news
               uucp   cron   auth2  ftp    ntp    audit  alert  cron2
               local0 local1 local2 local3 local4 local5 local6 local7

           Note that the facility is ignored for the "short" and "raw"
           formats, but still required as a positional field. It is
           recommended to use "daemon" in this case to make it clear that
           it's only supposed to be used locally.

<level>    is optional and can be specified to filter outgoing messages. By
           default, all messages are sent. If a level is specified, only
           messages with a severity at least as important as this level
           will be sent. An optional minimum level can be specified. If it
           is set, logs emitted with a more severe level than this one will
           be capped to this level. This is used to avoid sending "emerg"
           messages on all terminals on some default syslog configurations.
           Eight levels are known :

             emerg  alert  crit   err    warning notice info  debug
It is important to keep in mind that it is the frontend which decides what to
log from a connection, and that in case of content switching, the log entries
from the backend will be ignored. Connections are logged at level "info".

However, backend log declaration define how and where servers status changes
will be logged. Level "notice" will be used to indicate a server going up,
"warning" will be used for termination signals and definitive service
termination, and "alert" will be used for when a server goes down.

Note : According to RFC3164, messages are truncated to 1024 bytes before
       being emitted.
Example :
log global
log stdout format short daemon          # send log to systemd
log stdout format raw daemon            # send everything to stdout
log stderr format raw daemon notice     # send important events to stderr
log 127.0.0.1:514 local0 notice         # only send important events
log tcp@127.0.0.1:514 local0 notice notice  # same but limit output
                                            # level and send in tcp
log "${LOCAL_SYSLOG}:514" local0 notice   # send to local server
log-format <string>
Specifies the log format string to use for traffic logs

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
This directive specifies the log format string that will be used for all logs
resulting from traffic passing through the frontend using this line. If the
directive is used in a defaults section, all subsequent frontends will use
the same log format. Please see section 8.2.4 which covers the log format
string in depth.

"log-format" directive overrides previous "option tcplog", "log-format" and
"option httplog" directives.
log-format-sd <string>
Specifies the RFC5424 structured-data log format string

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
This directive specifies the RFC5424 structured-data log format string that
will be used for all logs resulting from traffic passing through the frontend
using this line. If the directive is used in a defaults section, all
subsequent frontends will use the same log format. Please see section 8.2.4
which covers the log format string in depth.

See https://tools.ietf.org/html/rfc5424#section-6.3 for more information
about the RFC5424 structured-data part.

Note : This log format string will be used only for loggers that have set
       log format to "rfc5424".
Example :
log-format-sd [exampleSDID@1234\ bytes=\"%B\"\ status=\"%ST\"]
log-tag <string>
Specifies the log tag to use for all outgoing logs

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Sets the tag field in the syslog header to this string. It defaults to the
log-tag set in the global section, otherwise the program name as launched
from the command line, which usually is "HAProxy". Sometimes it can be useful
to differentiate between multiple processes running on the same host, or to
differentiate customer instances running in the same process. In the backend,
logs about servers up/down will use this tag. As a hint, it can be convenient
to set a log-tag related to a hosted customer in a defaults section then put
all the frontends and backends for that customer, then start another customer
in a new defaults section. See also the global "log-tag" directive.
Set the maximum server queue size for maintaining keep-alive connections

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
HTTP keep-alive tries to reuse the same server connection whenever possible,
but sometimes it can be counter-productive, for example if a server has a lot
of connections while other ones are idle. This is especially true for static
servers.

The purpose of this setting is to set a threshold on the number of queued
connections at which HAProxy stops trying to reuse the same server and prefers
to find another one. The default value, -1, means there is no limit. A value
of zero means that keep-alive requests will never be queued. For very close
servers which can be reached with a low latency and which are not sensible to
breaking keep-alive, a low value is recommended (e.g. local static server can
use a value of 10 or less). For remote servers suffering from a high latency,
higher values might be needed to cover for the latency and/or the cost of
picking a different server.

Note that this has no impact on responses which are maintained to the same
server consecutively to a 401 response. They will still go to the same server
even if they have to be queued.
Set the maximum number of outgoing connections we can keep idling for a given
client session. The default is 5 (it precisely equals MAX_SRV_LIST which is
defined at build time).

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
maxconn <conns>
Fix the maximum number of concurrent connections on a frontend

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments :
<conns>   is the maximum number of concurrent connections the frontend will
          accept to serve. Excess connections will be queued by the system
          in the socket's listen queue and will be served once a connection
          closes.
If the system supports it, it can be useful on big sites to raise this limit
very high so that HAProxy manages connection queues, instead of leaving the
clients with unanswered connection attempts. This value should not exceed the
global maxconn. Also, keep in mind that a connection contains two buffers
of tune.bufsize (16kB by default) each, as well as some other data resulting
in about 33 kB of RAM being consumed per established connection. That means
that a medium system equipped with 1GB of RAM can withstand around
20000-25000 concurrent connections if properly tuned.

Also, when <conns> is set to large values, it is possible that the servers
are not sized to accept such loads, and for this reason it is generally wise
to assign them some reasonable connection limits.

When this value is set to zero, which is the default, the global "maxconn"
value is used.
mode { tcp|http }
Set the running mode or protocol of the instance

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
yes
yes
Arguments :
tcp       The instance will work in pure TCP mode. A full-duplex connection
          will be established between clients and servers, and no layer 7
          examination will be performed. This is the default mode. It
          should be used for SSL, SSH, SMTP, ...

http      The instance will work in HTTP mode. The client request will be
          analyzed in depth before connecting to any server. Any request
          which is not RFC-compliant will be rejected. Layer 7 filtering,
          processing and switching will be possible. This is the mode which
          brings HAProxy most of its value.
When doing content switching, it is mandatory that the frontend and the
backend are in the same mode (generally HTTP), otherwise the configuration
will be refused.
Example :
defaults http_instances
    mode http
monitor fail { if | unless } <condition>
Add a condition to report a failure to a monitor HTTP request.

May be used in sections :

defaultsfrontendlistenbackend
no
no
yes
yes
yes
yes
no
no
Arguments :
if <cond>     the monitor request will fail if the condition is satisfied,
              and will succeed otherwise. The condition should describe a
              combined test which must induce a failure if all conditions
              are met, for instance a low number of servers both in a
              backend and its backup.

unless <cond> the monitor request will succeed only if the condition is
              satisfied, and will fail otherwise. Such a condition may be
              based on a test on the presence of a minimum number of active
              servers in a list of backends.
This statement adds a condition which can force the response to a monitor
request to report a failure. By default, when an external component queries
the URI dedicated to monitoring, a 200 response is returned. When one of the
conditions above is met, HAProxy will return 503 instead of 200. This is
very useful to report a site failure to an external component which may base
routing advertisements between multiple sites on the availability reported by
HAProxy. In this case, one would rely on an ACL involving the "nbsrv"
criterion. Note that "monitor fail" only works in HTTP mode. Both status
messages may be tweaked using "errorfile" or "errorloc" if needed.
Example:
frontend www
   mode http
   acl site_dead nbsrv(dynamic) lt 2
   acl site_dead nbsrv(static)  lt 2
   monitor-uri   /site_alive
   monitor fail  if site_dead
Intercept a URI used by external components' monitor requests

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments :
<uri>     is the exact URI which we want to intercept to return HAProxy's
          health status instead of forwarding the request.
When an HTTP request referencing <uri> will be received on a frontend,
HAProxy will not forward it nor log it, but instead will return either
"HTTP/1.0 200 OK" or "HTTP/1.0 503 Service unavailable", depending on failure
conditions defined with "monitor fail". This is normally enough for any
front-end HTTP probe to detect that the service is UP and running without
forwarding the request to a backend server. Note that the HTTP method, the
version and all headers are ignored, but the request must at least be valid
at the HTTP level. This keyword may only be used with an HTTP-mode frontend.

Monitor requests are processed very early, just after the request is parsed
and even before any "http-request". The only rulesets applied before are the
tcp-request ones. They cannot be logged either, and it is the intended
purpose. Only one URI may be configured for monitoring; when multiple
"monitor-uri" statements are present, the last one will define the URI to
be used. They are only used to report HAProxy's health to an upper component,
nothing more. However, it is possible to add any number of conditions using
"monitor fail" and ACLs so that the result can be adjusted to whatever check
can be imagined (most often the number of available servers in a backend).

Note: if <uri> starts by a slash ('/'), the matching is performed against the
      request's path instead of the request's uri. It is a workaround to let
      the HTTP/2 requests match the monitor-uri. Indeed, in HTTP/2, clients
      are encouraged to send absolute URIs only.
Example :
# Use /haproxy_test to report HAProxy's status
frontend www
    mode http
    monitor-uri /haproxy_test
Enable or disable early dropping of aborted requests pending in queues.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments : none
In presence of very high loads, the servers will take some time to respond.
The per-instance connection queue will inflate, and the response time will
increase respective to the size of the queue times the average per-session
response time. When clients will wait for more than a few seconds, they will
often hit the "STOP" button on their browser, leaving a useless request in
the queue, and slowing down other users, and the servers as well, because the
request will eventually be served, then aborted at the first error
encountered while delivering the response.

As there is no way to distinguish between a full STOP and a simple output
close on the client side, HTTP agents should be conservative and consider
that the client might only have closed its output channel while waiting for
the response. However, this introduces risks of congestion when lots of users
do the same, and is completely useless nowadays because probably no client at
all will close the session while waiting for the response. Some HTTP agents
support this behavior (Squid, Apache, HAProxy), and others do not (TUX, most
hardware-based load balancers). So the probability for a closed input channel
to represent a user hitting the "STOP" button is close to 100%, and the risk
of being the single component to break rare but valid traffic is extremely
low, which adds to the temptation to be able to abort a session early while
still not served and not pollute the servers.

In HAProxy, the user can choose the desired behavior using the option
"abortonclose". By default (without the option) the behavior is HTTP
compliant and aborted requests will be served. But when the option is
specified, a session with an incoming channel closed will be aborted while
it is still possible, either pending in the queue for a connection slot, or
during the connection establishment if the server has not yet acknowledged
the connection request. This considerably reduces the queue size and the load
on saturated servers when users are tempted to click on STOP, which in turn
reduces the response time for other users.

If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
Enable or disable relaxing of HTTP request parsing

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments : none
By default, HAProxy complies with RFC7230 in terms of message parsing. This
means that invalid characters in header names are not permitted and cause an
error to be returned to the client. This is the desired behavior as such
forbidden characters are essentially used to build attacks exploiting server
weaknesses, and bypass security filtering. Sometimes, a buggy browser or
server will emit invalid header names for whatever reason (configuration,
implementation) and the issue will not be immediately fixed. In such a case,
it is possible to relax HAProxy's header name parser to accept any character
even if that does not make sense, by specifying this option. Similarly, the
list of characters allowed to appear in a URI is well defined by RFC3986, and
chars 0-31, 32 (space), 34 ('"'), 60 ('<'), 62 ('>'), 92 ('\'), 94 ('^'), 96
('`'), 123 ('{'), 124 ('|'), 125 ('}'), 127 (delete) and anything above are
not allowed at all. HAProxy always blocks a number of them (0..32, 127). The
remaining ones are blocked by default unless this option is enabled. This
option also relaxes the test on the HTTP version, it allows HTTP/0.9 requests
to pass through (no version specified) and multiple digits for both the major
and the minor version. Finally, this option also allows incoming URLs to
contain fragment references ('#' after the path).

This option should never be enabled by default as it hides application bugs
and open security breaches. It should only be deployed after a problem has
been confirmed.

When this option is enabled, erroneous header names will still be accepted in
requests, but the complete request will be captured in order to permit later
analysis using the "show errors" request on the UNIX stats socket. Similarly,
requests containing invalid chars in the URI part will be logged. Doing this
also helps confirming that the issue has been solved.

If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
Enable or disable relaxing of HTTP response parsing

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments : none
By default, HAProxy complies with RFC7230 in terms of message parsing. This
means that invalid characters in header names are not permitted and cause an
error to be returned to the client. This is the desired behavior as such
forbidden characters are essentially used to build attacks exploiting server
weaknesses, and bypass security filtering. Sometimes, a buggy browser or
server will emit invalid header names for whatever reason (configuration,
implementation) and the issue will not be immediately fixed. In such a case,
it is possible to relax HAProxy's header name parser to accept any character
even if that does not make sense, by specifying this option. This option also
relaxes the test on the HTTP version format, it allows multiple digits for
both the major and the minor version.

This option should never be enabled by default as it hides application bugs
and open security breaches. It should only be deployed after a problem has
been confirmed.

When this option is enabled, erroneous header names will still be accepted in
responses, but the complete response will be captured in order to permit
later analysis using the "show errors" request on the UNIX stats socket.
Doing this also helps confirming that the issue has been solved.

If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
Use either all backup servers at a time or only the first one

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments : none
By default, the first operational backup server gets all traffic when normal
servers are all down. Sometimes, it may be preferred to use multiple backups
at once, because one will not be enough. When "option allbackups" is enabled,
the load balancing will be performed among all backup servers when all normal
ones are unavailable. The same load balancing algorithm will be used and the
servers' weights will be respected. Thus, there will not be any priority
order between the backup servers anymore.

This option is mostly used with static server farms dedicated to return a
"sorry" page when an application is completely offline.

If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
Analyze all server responses and block responses with cacheable cookies

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
no
no
yes
yes
yes
yes
Arguments : none
Some high-level frameworks set application cookies everywhere and do not
always let enough control to the developer to manage how the responses should
be cached. When a session cookie is returned on a cacheable object, there is a
high risk of session crossing or stealing between users traversing the same
caches. In some situations, it is better to block the response than to let
some sensitive session information go in the wild.

The option "checkcache" enables deep inspection of all server responses for
strict compliance with HTTP specification in terms of cacheability. It
carefully checks "Cache-control", "Pragma" and "Set-cookie" headers in server
response to check if there's a risk of caching a cookie on a client-side
proxy. When this option is enabled, the only responses which can be delivered
to the client are :
  - all those without "Set-Cookie" header;
  - all those with a return code other than 200, 203, 204, 206, 300, 301,
    404, 405, 410, 414, 501, provided that the server has not set a
    "Cache-control: public" header field;
  - all those that result from a request using a method other than GET, HEAD,
    OPTIONS, TRACE, provided that the server has not set a 'Cache-Control:
    public' header field;
  - those with a 'Pragma: no-cache' header
  - those with a 'Cache-control: private' header
  - those with a 'Cache-control: no-store' header
  - those with a 'Cache-control: max-age=0' header
  - those with a 'Cache-control: s-maxage=0' header
  - those with a 'Cache-control: no-cache' header
  - those with a 'Cache-control: no-cache="set-cookie"' header
  - those with a 'Cache-control: no-cache="set-cookie,' header
    (allowing other fields after set-cookie)

If a response doesn't respect these requirements, then it will be blocked
just as if it was from an "http-response deny" rule, with an "HTTP 502 bad
gateway". The session state shows "PH--" meaning that the proxy blocked the
response during headers processing. Additionally, an alert will be sent in
the logs so that admins are informed that there's something to be fixed.

Due to the high impact on the application, the application should be tested
in depth with the option enabled before going to production. It is also a
good practice to always activate it during tests, even if it is not used in
production, as it will report potentially dangerous application behaviors.

If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
Enable or disable the sending of TCP keepalive packets on the client side

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments : none
When there is a firewall or any session-aware component between a client and
a server, and when the protocol involves very long sessions with long idle
periods (e.g. remote desktops), there is a risk that one of the intermediate
components decides to expire a session which has remained idle for too long.

Enabling socket-level TCP keep-alives makes the system regularly send packets
to the other end of the connection, leaving it active. The delay between
keep-alive probes is controlled by the system only and depends both on the
operating system and its tuning parameters.

It is important to understand that keep-alive packets are neither emitted nor
received at the application level. It is only the network stacks which sees
them. For this reason, even if one side of the proxy already uses keep-alives
to maintain its connection alive, those keep-alive packets will not be
forwarded to the other side of the proxy.

Please note that this has nothing to do with HTTP keep-alive.

Using option "clitcpka" enables the emission of TCP keep-alive probes on the
client side of a connection, which should help when session expirations are
noticed between HAProxy and a client.

If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
Enable continuous traffic statistics updates

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments : none
By default, counters used for statistics calculation are incremented
only when a session finishes. It works quite well when serving small
objects, but with big ones (for example large images or archives) or
with A/V streaming, a graph generated from HAProxy counters looks like
a hedgehog. With this option enabled counters get incremented frequently
along the session, typically every 5 seconds, which is often enough to
produce clean graphs. Recounting touches a hotpath directly so it is not
not enabled by default, as it can cause a lot of wakeups for very large
session counts and cause a small performance drop.
Enable or disable the implicit HTTP/2 upgrade from an HTTP/1.x client
connection.

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments : none
By default, HAProxy is able to implicitly upgrade an HTTP/1.x client
connection to an HTTP/2 connection if the first request it receives from a
given HTTP connection matches the HTTP/2 connection preface (i.e. the string
"PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"). This way, it is possible to support
HTTP/1.x and HTTP/2 clients on a non-SSL connections. This option must be
used to disable the implicit upgrade. Note this implicit upgrade is only
supported for HTTP proxies, thus this option too. Note also it is possible to
force the HTTP/2 on clear connections by specifying "proto h2" on the bind
line. Finally, this option is applied on all bind lines. To disable implicit
HTTP/2 upgrades for a specific bind line, it is possible to use "proto h1".

If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
Enable or disable logging of normal, successful connections

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments : none
There are large sites dealing with several thousand connections per second
and for which logging is a major pain. Some of them are even forced to turn
logs off and cannot debug production issues. Setting this option ensures that
normal connections, those which experience no error, no timeout, no retry nor
redispatch, will not be logged. This leaves disk space for anomalies. In HTTP
mode, the response status code is checked and return codes 5xx will still be
logged.

It is strongly discouraged to use this option as most of the time, the key to
complex issues is in the normal logs which will not be logged here. If you
need to separate logs, see the "log-separate-errors" option instead.
Enable or disable logging of null connections

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes
yes
no
no
Arguments : none
In certain environments, there are components which will regularly connect to
various systems to ensure that they are still alive. It can be the case from
another load balancer as well as from monitoring systems. By default, even a
simple port probe or scan will produce a log. If those connections pollute
the logs too much, it is possible to enable option "dontlognull" to indicate
that a connection on which no data has been transferred will not be logged,
which typically corresponds to those probes. Note that errors will still be
returned to the client and accounted for in the stats. If this is not what is
desired, option http-ignore-probes can be used instead.

It is generally recommended not to use this option in uncontrolled
environments (e.g. internet), otherwise scans and other malicious activities
would not be logged.

If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
option forwardfor [ except <network> ] [ header <name> ] [ if-none ]
Enable insertion of the X-Forwarded-For header to requests sent to servers

May be used in sections :

defaultsfrontendlistenbackend
yes
yes
yes
yes
yes