This document covers the configuration language as implemented in the version specified above. It does not provide any hints, examples, or advice. For such documentation, please refer to the Reference Manual or the Architecture Manual. The summary below is meant to help you find sections by name and navigate through the document. Note to documentation contributors : This document is formatted with 80 columns per line, with even number of spaces for indentation and without tabs. Please follow these rules strictly so that it remains easily printable everywhere. If a line needs to be printed verbatim and does not fit, please end each line with a backslash ('\') and continue on next line, indented by two characters. It is also sometimes useful to prefix all output lines (logs, console outputs) with 3 closing angle brackets ('>>>') in order to emphasize the difference between inputs and outputs when they may be ambiguous. If you add sections, please update the summary below for easier searching.
1. | Quick reminder about HTTP | |
1.1. | ||
1.2. | ||
1.2.1. | ||
1.2.2. | ||
1.3. | ||
1.3.1. | ||
1.3.2. | ||
2. |
Configuring HAProxy | |
2.1. | ||
2.2. | ||
2.3. | ||
2.4. | ||
2.5. | ||
3. |
Global parameters | |
3.1. | ||
3.2. | ||
3.3. | ||
3.4. | ||
3.5. | ||
3.6. | ||
3.7. | ||
4. |
Proxies | |
4.1. | ||
4.2. | ||
5. |
Bind and server options | |
5.1. | ||
5.2. | ||
5.3. | ||
5.3.1. | ||
5.3.2. | ||
6. |
HTTP header manipulation | |
7. |
Using ACLs and fetching samples | |
7.1. | ||
7.1.1. | ||
7.1.2. | ||
7.1.3. | ||
7.1.4. | ||
7.1.5. | ||
7.1.6. | ||
7.2. | ||
7.3. | ||
7.3.1. | ||
7.3.2. | ||
7.3.3. | ||
7.3.4. | ||
7.3.5. | ||
7.3.6. | ||
7.4. | ||
8. |
Logging | |
8.1. | ||
8.2. | ||
8.2.1. | ||
8.2.2. | ||
8.2.3. | ||
8.2.4. | ||
8.2.5. | ||
8.3. | ||
8.3.1. | ||
8.3.2. | ||
8.3.3. | ||
8.3.4. | ||
8.4. | ||
8.5. | ||
8.6. | ||
8.7. | ||
8.8. | ||
8.9. | ||
9. |
Supported filters | |
9.1. | ||
9.2. | ||
9.3. | ||
9.4. | ||
10. |
Cache | |
10.1. | ||
10.2. | ||
10.2.1. | ||
10.2.2. |
When HAProxy is running in HTTP mode, both the request and the response are fully analyzed and indexed, thus it becomes possible to build matching criteria on almost anything found in the contents. However, it is important to understand how HTTP requests and responses are formed, and how HAProxy decomposes them. It will then become easier to write correct rules and to debug existing configurations.
The HTTP protocol is transaction-driven. This means that each request will lead to one and only one response. Traditionally, a TCP connection is established from the client to the server, a request is sent by the client through the connection, the server responds, and the connection is closed. A new request will involve a new connection : [CON1] [REQ1] ... [RESP1] [CLO1] [CON2] [REQ2] ... [RESP2] [CLO2] ... In this mode, called the "HTTP close" mode, there are as many connection establishments as there are HTTP transactions. Since the connection is closed by the server after the response, the client does not need to know the content length. Due to the transactional nature of the protocol, it was possible to improve it to avoid closing a connection between two subsequent transactions. In this mode however, it is mandatory that the server indicates the content length for each response so that the client does not wait indefinitely. For this, a special header is used: "Content-length". This mode is called the "keep-alive" mode : [CON] [REQ1] ... [RESP1] [REQ2] ... [RESP2] [CLO] ... Its advantages are a reduced latency between transactions, and less processing power required on the server side. It is generally better than the close mode, but not always because the clients often limit their concurrent connections to a smaller value. Another improvement in the communications is the pipelining mode. It still uses keep-alive, but the client does not wait for the first response to send the second request. This is useful for fetching large number of images composing a page : [CON] [REQ1] [REQ2] ... [RESP1] [RESP2] [CLO] ... This can obviously have a tremendous benefit on performance because the network latency is eliminated between subsequent requests. Many HTTP agents do not correctly support pipelining since there is no way to associate a response with the corresponding request in HTTP. For this reason, it is mandatory for the server to reply in the exact same order as the requests were received. The next improvement is the multiplexed mode, as implemented in HTTP/2. This time, each transaction is assigned a single stream identifier, and all streams are multiplexed over an existing connection. Many requests can be sent in parallel by the client, and responses can arrive in any order since they also carry the stream identifier. By default HAProxy operates in keep-alive mode with regards to persistent connections: for each connection it processes each request and response, and leaves the connection idle on both sides between the end of a response and the start of a new request. When it receives HTTP/2 connections from a client, it processes all the requests in parallel and leaves the connection idling, waiting for new requests, just as if it was a keep-alive HTTP connection. HAProxy supports 4 connection modes : - keep alive : all requests and responses are processed (default) - tunnel : only the first request and response are processed, everything else is forwarded with no analysis (deprecated). - server close : the server-facing connection is closed after the response. - close : the connection is actively closed after end of response.
First, let's consider this HTTP request : Line Contents number 1 GET /serv/login.php?lang=en&profile=2 HTTP/1.1 2 Host: www.mydomain.com 3 User-agent: my small browser 4 Accept: image/jpeg, image/gif 5 Accept: image/png
Line 1 is the "request line". It is always composed of 3 fields : - a METHOD : GET - a URI : /serv/login.php?lang=en&profile=2 - a version tag : HTTP/1.1 All of them are delimited by what the standard calls LWS (linear white spaces), which are commonly spaces, but can also be tabs or line feeds/carriage returns followed by spaces/tabs. The method itself cannot contain any colon (':') and is limited to alphabetic letters. All those various combinations make it desirable that HAProxy performs the splitting itself rather than leaving it to the user to write a complex or inaccurate regular expression. The URI itself can have several forms : - A "relative URI" : /serv/login.php?lang=en&profile=2 It is a complete URL without the host part. This is generally what is received by servers, reverse proxies and transparent proxies. - An "absolute URI", also called a "URL" : http://192.168.0.12:8080/serv/login.php?lang=en&profile=2 It is composed of a "scheme" (the protocol name followed by '://'), a host name or address, optionally a colon (':') followed by a port number, then a relative URI beginning at the first slash ('/') after the address part. This is generally what proxies receive, but a server supporting HTTP/1.1 must accept this form too. - a star ('*') : this form is only accepted in association with the OPTIONS method and is not relayable. It is used to inquiry a next hop's capabilities. - an address:port combination : 192.168.0.12:80 This is used with the CONNECT method, which is used to establish TCP tunnels through HTTP proxies, generally for HTTPS, but sometimes for other protocols too. In a relative URI, two sub-parts are identified. The part before the question mark is called the "path". It is typically the relative path to static objects on the server. The part after the question mark is called the "query string". It is mostly used with GET requests sent to dynamic scripts and is very specific to the language, framework or application in use. HTTP/2 doesn't convey a version information with the request, so the version is assumed to be the same as the one of the underlying protocol (i.e. "HTTP/2").
The headers start at the second line. They are composed of a name at the beginning of the line, immediately followed by a colon (':'). Traditionally, an LWS is added after the colon but that's not required. Then come the values. Multiple identical headers may be folded into one single line, delimiting the values with commas, provided that their order is respected. This is commonly encountered in the "Cookie:" field. A header may span over multiple lines if the subsequent lines begin with an LWS. In the example in 1.2, lines 4 and 5 define a total of 3 values for the "Accept:" header. Contrary to a common misconception, header names are not case-sensitive, and their values are not either if they refer to other header names (such as the "Connection:" header). In HTTP/2, header names are always sent in lower case, as can be seen when running in debug mode. Internally, all header names are normalized to lower case so that HTTP/1.x and HTTP/2 use the exact same representation, and they are sent as-is on the other side. This explains why an HTTP/1.x request typed with camel case is delivered in lower case. The end of the headers is indicated by the first empty line. People often say that it's a double line feed, which is not exact, even if a double line feed is one valid form of empty line. Fortunately, HAProxy takes care of all these complex combinations when indexing headers, checking values and counting them, so there is no reason to worry about the way they could be written, but it is important not to accuse an application of being buggy if it does unusual, valid things. Important note: As suggested by RFC7231, HAProxy normalizes headers by replacing line breaks in the middle of headers by LWS in order to join multi-line headers. This is necessary for proper analysis and helps less capable HTTP parsers to work correctly and not to be fooled by such complex constructs.
An HTTP response looks very much like an HTTP request. Both are called HTTP messages. Let's consider this HTTP response : Line Contents number 1 HTTP/1.1 200 OK 2 Content-length: 350 3 Content-Type: text/html As a special case, HTTP supports so called "Informational responses" as status codes 1xx. These messages are special in that they don't convey any part of the response, they're just used as sort of a signaling message to ask a client to continue to post its request for instance. In the case of a status 100 response the requested information will be carried by the next non-100 response message following the informational one. This implies that multiple responses may be sent to a single request, and that this only works when keep-alive is enabled (1xx messages are HTTP/1.1 only). HAProxy handles these messages and is able to correctly forward and skip them, and only process the next non-100 response. As such, these messages are neither logged nor transformed, unless explicitly state otherwise. Status 101 messages indicate that the protocol is changing over the same connection and that haproxy must switch to tunnel mode, just as if a CONNECT had occurred. Then the Upgrade header would contain additional information about the type of protocol the connection is switching to.
Line 1 is the "response line". It is always composed of 3 fields : - a version tag : HTTP/1.1 - a status code : 200 - a reason : OK The status code is always 3-digit. The first digit indicates a general status : - 1xx = informational message to be skipped (e.g. 100, 101) - 2xx = OK, content is following (e.g. 200, 206) - 3xx = OK, no content following (e.g. 302, 304) - 4xx = error caused by the client (e.g. 401, 403, 404) - 5xx = error caused by the server (e.g. 500, 502, 503) Please refer to RFC7231 for the detailed meaning of all such codes. The "reason" field is just a hint, but is not parsed by clients. Anything can be found there, but it's a common practice to respect the well-established messages. It can be composed of one or multiple words, such as "OK", "Found", or "Authentication Required". HAProxy may emit the following status codes by itself : Code When / reason 200 access to stats page, and when replying to monitoring requests 301 when performing a redirection, depending on the configured code 302 when performing a redirection, depending on the configured code 303 when performing a redirection, depending on the configured code 307 when performing a redirection, depending on the configured code 308 when performing a redirection, depending on the configured code 400 for an invalid or too large request 401 when an authentication is required to perform the action (when accessing the stats page) 403 when a request is forbidden by a "block" ACL or "reqdeny" filter 404 when the requested resource could not be found 408 when the request timeout strikes before the request is complete 410 when the requested resource is no longer available and will not be available again 500 when haproxy encounters an unrecoverable internal error, such as a memory allocation failure, which should never happen 502 when the server returns an empty, invalid or incomplete response, or when an "rspdeny" filter blocks the response. 503 when no server was available to handle the request, or in response to monitoring requests which match the "monitor fail" condition 504 when the response timeout strikes before the server responds The error 4xx and 5xx codes above may be customized (see "errorloc" in section 4.2).
Response headers work exactly like request headers, and as such, HAProxy uses the same parsing function for both. Please refer to paragraph 1.2.2 for more details.
HAProxy's configuration process involves 3 major sources of parameters : - the arguments from the command-line, which always take precedence - the "global" section, which sets process-wide parameters - the proxies sections which can take form of "defaults", "listen", "frontend" and "backend". The configuration file syntax consists in lines beginning with a keyword referenced in this manual, optionally followed by one or several parameters delimited by spaces.
HAProxy's configuration introduces a quoting and escaping system similar to many programming languages. The configuration file supports 3 types: escaping with a backslash, weak quoting with double quotes, and strong quoting with single quotes. If spaces have to be entered in strings, then they must be escaped by preceding them by a backslash ('\') or by quoting them. Backslashes also have to be escaped by doubling or strong quoting them. Escaping is achieved by preceding a special character by a backslash ('\'): \ to mark a space and differentiate it from a delimiter \# to mark a hash and differentiate it from a comment \\ to use a backslash \' to use a single quote and differentiate it from strong quoting \" to use a double quote and differentiate it from weak quoting Weak quoting is achieved by using double quotes (""). Weak quoting prevents the interpretation of: space as a parameter separator ' single quote as a strong quoting delimiter # hash as a comment start Weak quoting permits the interpretation of variables, if you want to use a non -interpreted dollar within a double quoted string, you should escape it with a backslash ("\$"), it does not work outside weak quoting. Interpretation of escaping and special characters are not prevented by weak quoting. Strong quoting is achieved by using single quotes (''). Inside single quotes, nothing is interpreted, it's the efficient way to quote regexes. Quoted and escaped strings are replaced in memory by their interpreted equivalent, it allows you to perform concatenation.
# those are equivalents:
log-format %{+Q}o\ %t\ %s\ %{-Q}r
log-format "%{+Q}o %t %s %{-Q}r"
log-format '%{+Q}o %t %s %{-Q}r'
log-format "%{+Q}o %t"' %s %{-Q}r'
log-format "%{+Q}o %t"' %s'\ %{-Q}r
# those are equivalents:
reqrep "^([^\ :]*)\ /static/(.*)" \1\ /\2
reqrep "^([^ :]*)\ /static/(.*)" '\1 /\2'
reqrep "^([^ :]*)\ /static/(.*)" "\1 /\2"
reqrep "^([^ :]*)\ /static/(.*)" "\1\ /\2"
HAProxy's configuration supports environment variables. Those variables are interpreted only within double quotes. Variables are expanded during the configuration parsing. Variable names must be preceded by a dollar ("$") and optionally enclosed with braces ("{}") similarly to what is done in Bourne shell. Variable names can contain alphanumerical characters or the character underscore ("_") but should not start with a digit.
bind "fd@${FD_APP1}"
log "${LOCAL_SYSLOG}:514" local0 notice # send to local server
user "$HAPROXY_USER"
Some variables are defined by HAProxy, they can be used in the configuration file, or could be inherited by a program (See 3.7. Programs): * HAPROXY_LOCALPEER: defined at the startup of the process which contains the name of the local peer. (See "-L" in the management guide.) * HAPROXY_CFGFILES: list of the configuration files loaded by HAProxy, separated by semicolons. Can be useful in the case you specified a directory. * HAPROXY_MWORKER: In master-worker mode, this variable is set to 1. * HAPROXY_CLI: configured listeners addresses of the stats socket for every processes, separated by semicolons. * HAPROXY_MASTER_CLI: In master-worker mode, listeners addresses of the master CLI, separated by semicolons. See also "external-check command" for other variables.
Some parameters involve values representing time, such as timeouts. These values are generally expressed in milliseconds (unless explicitly stated otherwise) but may be expressed in any other unit by suffixing the unit to the numeric value. It is important to consider this because it will not be repeated for every keyword. Supported units are : - us : microseconds. 1 microsecond = 1/1000000 second - ms : milliseconds. 1 millisecond = 1/1000 second. This is the default. - s : seconds. 1s = 1000ms - m : minutes. 1m = 60s = 60000ms - h : hours. 1h = 60m = 3600s = 3600000ms - d : days. 1d = 24h = 1440m = 86400s = 86400000ms
# Simple configuration for an HTTP proxy listening on port 80 on all # interfaces and forwarding requests to a single backend "servers" with a # single server "server1" listening on 127.0.0.1:8000 global daemon maxconn 256 defaults mode http timeout connect 5000ms timeout client 50000ms timeout server 50000ms frontend http-in bind *:80 default_backend servers backend servers server server1 127.0.0.1:8000 maxconn 32 # The same configuration defined with a single listen block. Shorter but # less expressive, especially in HTTP mode. global daemon maxconn 256 defaults mode http timeout connect 5000ms timeout client 50000ms timeout server 50000ms listen http-in bind *:80 server server1 127.0.0.1:8000 maxconn 32 Assuming haproxy is in $PATH, test these configurations in a shell with: $ sudo haproxy -f configuration.conf -c
Parameters in the "global" section are process-wide and often OS-specific. They are generally set once for all and do not need being changed once correct. Some of them have command-line equivalents. The following keywords are supported in the "global" section : * Process management and security - ca-base - chroot - crt-base - cpu-map - daemon - description - deviceatlas-json-file - deviceatlas-log-level - deviceatlas-separator - deviceatlas-properties-cookie - external-check - gid - group - hard-stop-after - h1-case-adjust - h1-case-adjust-file - log - log-tag - log-send-hostname - lua-load - mworker-max-reloads - nbproc - nbthread - node - pidfile - presetenv - resetenv - uid - ulimit-n - user - set-dumpable - setenv - stats - ssl-default-bind-ciphers - ssl-default-bind-ciphersuites - ssl-default-bind-options - ssl-default-server-ciphers - ssl-default-server-ciphersuites - ssl-default-server-options - ssl-dh-param-file - ssl-server-verify - unix-bind - unsetenv - 51degrees-data-file - 51degrees-property-name-list - 51degrees-property-separator - 51degrees-cache-size - wurfl-data-file - wurfl-information-list - wurfl-information-list-separator - wurfl-cache-size * Performance tuning - max-spread-checks - maxconn - maxconnrate - maxcomprate - maxcompcpuusage - maxpipes - maxsessrate - maxsslconn - maxsslrate - maxzlibmem - noepoll - nokqueue - noevports - nopoll - nosplice - nogetaddrinfo - noreuseport - profiling.tasks - spread-checks - server-state-base - server-state-file - ssl-engine - ssl-mode-async - tune.buffers.limit - tune.buffers.reserve - tune.bufsize - tune.chksize - tune.comp.maxlevel - tune.h2.header-table-size - tune.h2.initial-window-size - tune.h2.max-concurrent-streams - tune.h2.max-frame-size - tune.http.cookielen - tune.http.logurilen - tune.http.maxhdr - tune.idletimer - tune.lua.forced-yield - tune.lua.maxmem - tune.lua.session-timeout - tune.lua.task-timeout - tune.lua.service-timeout - tune.maxaccept - tune.maxpollevents - tune.maxrewrite - tune.pattern.cache-size - tune.pipesize - tune.pool-high-fd-ratio - tune.pool-low-fd-ratio - tune.rcvbuf.client - tune.rcvbuf.server - tune.recv_enough - tune.runqueue-depth - tune.sndbuf.client - tune.sndbuf.server - tune.ssl.cachesize - tune.ssl.lifetime - tune.ssl.force-private-cache - tune.ssl.maxrecord - tune.ssl.default-dh-param - tune.ssl.ssl-ctx-cache-size - tune.ssl.capture-cipherlist-size - tune.vars.global-max-size - tune.vars.proc-max-size - tune.vars.reqres-max-size - tune.vars.sess-max-size - tune.vars.txn-max-size - tune.zlib.memlevel - tune.zlib.windowsize * Debugging - debug - quiet
Assigns a default directory to fetch SSL CA certificates and CRLs from when a relative path is used with "ca-file" or "crl-file" directives. Absolute locations specified in "ca-file" and "crl-file" prevail and ignore "ca-base".
Changes current directory to <jail dir> and performs a chroot() there before dropping privileges. This increases the security level in case an unknown vulnerability would be exploited, since it would make it very hard for the attacker to exploit the system. This only works when the process is started with superuser privileges. It is important to ensure that <jail_dir> is both empty and non-writable to anyone.
On Linux 2.6 and above, it is possible to bind a process or a thread to a specific CPU set. This means that the process or the thread will never run on other CPUs. The "cpu-map" directive specifies CPU sets for process or thread sets. The first argument is a process set, eventually followed by a thread set. These sets have the format all | odd | even | number[-[number]] <number>> must be a number between 1 and 32 or 64, depending on the machine's word size. Any process IDs above nbproc and any thread IDs above nbthread are ignored. It is possible to specify a range with two such number delimited by a dash ('-'). It also is possible to specify all processes at once using "all", only odd numbers using "odd" or even numbers using "even", just like with the "bind-process" directive. The second and forthcoming arguments are CPU sets. Each CPU set is either a unique number between 0 and 31 or 63 or a range with two such numbers delimited by a dash ('-'). Multiple CPU numbers or ranges may be specified, and the processes or threads will be allowed to bind to all of them. Obviously, multiple "cpu-map" directives may be specified. Each "cpu-map" directive will replace the previous ones when they overlap. A thread will be bound on the intersection of its mapping and the one of the process on which it is attached. If the intersection is null, no specific binding will be set for the thread. Ranges can be partially defined. The higher bound can be omitted. In such case, it is replaced by the corresponding maximum value, 32 or 64 depending on the machine's word size. The prefix "auto:" can be added before the process set to let HAProxy automatically bind a process or a thread to a CPU by incrementing process/thread and CPU sets. To be valid, both sets must have the same size. No matter the declaration order of the CPU sets, it will be bound from the lowest to the highest bound. Having a process and a thread range with the "auto:" prefix is not supported. Only one range is supported, the other one must be a fixed number.
cpu-map 1-4 0-3 # bind processes 1 to 4 on the first 4 CPUs
cpu-map 1/all 0-3 # bind all threads of the first process on the
# first 4 CPUs
cpu-map 1- 0- # will be replaced by "cpu-map 1-64 0-63"
# or "cpu-map 1-32 0-31" depending on the machine's
# word size.
# all these lines bind the process 1 to the cpu 0, the process 2 to cpu 1
# and so on.
cpu-map auto:1-4 0-3
cpu-map auto:1-4 0-1 2-3
cpu-map auto:1-4 3 2 1 0
# all these lines bind the thread 1 to the cpu 0, the thread 2 to cpu 1
# and so on.
cpu-map auto:1/1-4 0-3
cpu-map auto:1/1-4 0-1 2-3
cpu-map auto:1/1-4 3 2 1 0
# bind each process to exactly one CPU using all/odd/even keyword
cpu-map auto:all 0-63
cpu-map auto:even 0-31
cpu-map auto:odd 32-63
# invalid cpu-map because process and CPU sets have different sizes.
cpu-map auto:1-4 0 # invalid
cpu-map auto:1 0-3 # invalid
# invalid cpu-map because automatic binding is used with a process range
# and a thread range.
cpu-map auto:all/all 0 # invalid
cpu-map auto:all/1-4 0 # invalid
cpu-map auto:1-4/all 0 # invalid
Assigns a default directory to fetch SSL certificates from when a relative path is used with "crtfile" directives. Absolute locations specified after "crtfile" prevail and ignore "crt-base".
Makes the process fork into background. This is the recommended mode of operation. It is equivalent to the command line "-D" argument. It can be disabled by the command line "-db" argument. This option is ignored in systemd mode.
Sets the path of the DeviceAtlas JSON data file to be loaded by the API. The path must be a valid JSON data file and accessible by HAProxy process.
Sets the level of information returned by the API. This directive is optional and set to 0 by default if not set.
Sets the character separator for the API properties results. This directive is optional and set to | by default if not set.
Sets the client cookie's name used for the detection if the DeviceAtlas Client-side component was used during the request. This directive is optional and set to DAPROPS by default if not set.
Allows the use of an external agent to perform health checks. This is disabled by default as a security precaution. See "option external-check".
Changes the process's group ID to <number>. It is recommended that the group ID is dedicated to HAProxy or to a small set of similar daemons. HAProxy must be started with a user belonging to this group, or with superuser privileges. Note that if haproxy is started from a user having supplementary groups, it will only be able to drop these groups if started with superuser privileges. See also "group" and "uid".
Similar to "gid" but uses the GID of group name <group name> from /etc/group. See also "gid" and "user".
Defines the maximum time allowed to perform a clean soft-stop.
<time> is the maximum time (by default in milliseconds) for which the instance will remain alive when a soft-stop is received via the SIGUSR1 signal.
This may be used to ensure that the instance will quit even if connections remain opened during a soft-stop (for example with long timeouts for a proxy in tcp mode). It applies both in TCP and HTTP mode.
global
hard-stop-after 30s
Defines the case adjustment to apply, when enabled, to the header name <from>, to change it to <to> before sending it to HTTP/1 clients or servers. <from> must be in lower case, and <from> and <to> must not differ except for their case. It may be repeated if several header names need to be adjusted. Duplicate entries are not allowed. If a lot of header names have to be adjusted, it might be more convenient to use "h1-case-adjust-file". Please note that no transformation will be applied unless "option h1-case-adjust-bogus-client" or "option h1-case-adjust-bogus-server" is specified in a proxy. There is no standard case for header names because, as stated in RFC7230, they are case-insensitive. So applications must handle them in a case- insensitive manner. But some bogus applications violate the standards and erroneously rely on the cases most commonly used by browsers. This problem becomes critical with HTTP/2 because all header names must be exchanged in lower case, and HAProxy follows the same convention. All header names are sent in lower case to clients and servers, regardless of the HTTP version. Applications which fail to properly process requests or responses may require to temporarily use such workarounds to adjust header names sent to them for the time it takes the application to be fixed. Please note that an application which requires such workarounds might be vulnerable to content smuggling attacks and must absolutely be fixed.
global
h1-case-adjust content-length Content-Length
See "h1-case-adjust-file", "option h1-case-adjust-bogus-client" and "option h1-case-adjust-bogus-server".
Defines a file containing a list of key/value pairs used to adjust the case of some header names before sending them to HTTP/1 clients or servers. The file <hdrs-file> must contain 2 header names per line. The first one must be in lower case and both must not differ except for their case. Lines which start with '#' are ignored, just like empty lines. Leading and trailing tabs and spaces are stripped. Duplicate entries are not allowed. Please note that no transformation will be applied unless "option h1-case-adjust-bogus-client" or "option h1-case-adjust-bogus-server" is specified in a proxy. If this directive is repeated, only the last one will be processed. It is an alternative to the directive "h1-case-adjust" if a lot of header names need to be adjusted. Please read the risks associated with using this. See "h1-case-adjust", "option h1-case-adjust-bogus-client" and "option h1-case-adjust-bogus-server".
Adds a global syslog server. Several global servers can be defined. They will receive logs for starts and exits, as well as all logs from proxies configured with "log global". <address> can be one of: - An IPv4 address optionally followed by a colon and a UDP port. If no port is specified, 514 is used by default (the standard syslog port). - An IPv6 address followed by a colon and optionally a UDP port. If no port is specified, 514 is used by default (the standard syslog port). - A filesystem path to a datagram UNIX domain socket, keeping in mind considerations for chroot (be sure the path is accessible inside the chroot) and uid/gid (be sure the path is appropriately writable). - A file descriptor number in the form "fd@<number>", which may point to a pipe, terminal, or socket. In this case unbuffered logs are used and one writev() call per log is performed. This is a bit expensive but acceptable for most workloads. Messages sent this way will not be truncated but may be dropped, in which case the DroppedLogs counter will be incremented. The writev() call is atomic even on pipes for messages up to PIPE_BUF size, which POSIX recommends to be at least 512 and which is 4096 bytes on most modern operating systems. Any larger message may be interleaved with messages from other processes. Exceptionally for debugging purposes the file descriptor may also be directed to a file, but doing so will significantly slow haproxy down as non-blocking calls will be ignored. Also there will be no way to purge nor rotate this file without restarting the process. Note that the configured syslog format is preserved, so the output is suitable for use with a TCP syslog server. See also the "short" and "raw" format below. - "stdout" / "stderr", which are respectively aliases for "fd@1" and "fd@2", see above. You may want to reference some environment variables in the address parameter, see section 2.3 about environment variables. <length> is an optional maximum line length. Log lines larger than this value will be truncated before being sent. The reason is that syslog servers act differently on log line length. All servers support the default value of 1024, but some servers simply drop larger lines while others do log them. If a server supports long lines, it may make sense to set this value here in order to avoid truncating long lines. Similarly, if a server drops long lines, it is preferable to truncate them before sending them. Accepted values are 80 to 65535 inclusive. The default value of 1024 is generally fine for all standard usages. Some specific cases of long captures or JSON-formatted logs may require larger values. You may also need to increase "tune.http.logurilen" if your request URIs are truncated. <format> is the log format used when generating syslog messages. It may be one of the following : rfc3164 The RFC3164 syslog message format. This is the default. (https://tools.ietf.org/html/rfc3164) rfc5424 The RFC5424 syslog message format. (https://tools.ietf.org/html/rfc5424) short A message containing only a level between angle brackets such as '<3>', followed by the text. The PID, date, time, process name and system name are omitted. This is designed to be used with a local log server. This format is compatible with what the systemd logger consumes. raw A message containing only the text. The level, PID, date, time, process name and system name are omitted. This is designed to be used in containers or during development, where the severity only depends on the file descriptor used (stdout/stderr). <ranges> A list of comma-separated ranges to identify the logs to sample. This is used to balance the load of the logs to send to the log server. The limits of the ranges cannot be null. They are numbered from 1. The size or period (in number of logs) of the sample must be set with <sample_size> parameter. <sample_size> The size of the sample in number of logs to consider when balancing their logging loads. It is used to balance the load of the logs to send to the syslog server. This size must be greater or equal to the maximum of the high limits of the ranges. (see also <ranges> parameter). <facility> must be one of the 24 standard syslog facilities : kern user mail daemon auth syslog lpr news uucp cron auth2 ftp ntp audit alert cron2 local0 local1 local2 local3 local4 local5 local6 local7 Note that the facility is ignored for the "short" and "raw" formats, but still required as a positional field. It is recommended to use "daemon" in this case to make it clear that it's only supposed to be used locally. An optional level can be specified to filter outgoing messages. By default, all messages are sent. If a maximum level is specified, only messages with a severity at least as important as this level will be sent. An optional minimum level can be specified. If it is set, logs emitted with a more severe level than this one will be capped to this level. This is used to avoid sending "emerg" messages on all terminals on some default syslog configurations. Eight levels are known : emerg alert crit err warning notice info debug
Sets the hostname field in the syslog header. If optional "string" parameter is set the header is set to the string contents, otherwise uses the hostname of the system. Generally used if one is not relaying logs through an intermediate syslog server or for simply customizing the hostname printed in the logs.
Sets the tag field in the syslog header to this string. It defaults to the
program name as launched from the command line, which usually is "haproxy".
Sometimes it can be useful to differentiate between multiple processes
running on the same host. See also the per-proxy "log-tag" directive.
This global directive loads and executes a Lua file. This directive can be used multiple times.
Master-worker mode. It is equivalent to the command line "-W" argument. This mode will launch a "master" which will monitor the "workers". Using this mode, you can reload HAProxy directly by sending a SIGUSR2 signal to the master. The master-worker mode is compatible either with the foreground or daemon mode. It is recommended to use this mode with multiprocess and systemd. By default, if a worker exits with a bad return code, in the case of a segfault for example, all workers will be killed, and the master will leave. It is convenient to combine this behavior with Restart=on-failure in a systemd unit file in order to relaunch the whole process. If you don't want this behavior, you must use the keyword "no-exit-on-failure". See also "-W" in the management guide.
In master-worker mode, this option limits the number of time a worker can survive to a reload. If the worker did not leave after a reload, once its number of reloads is greater than this number, the worker will receive a SIGTERM. This option helps to keep under control the number of workers. See also "show proc" in the Management Guide.
Creates <number> processes when going daemon. This requires the "daemon" mode. By default, only one process is created, which is the recommended mode of operation. For systems limited to small sets of file descriptors per process, it may be needed to fork multiple daemons. When set to a value larger than 1, threads are automatically disabled. USING MULTIPLE PROCESSES IS HARDER TO DEBUG AND IS REALLY DISCOURAGED. See also "daemon" and "nbthread".
This setting is only available when support for threads was built in. It makes haproxy run on <number> threads. This is exclusive with "nbproc". While "nbproc" historically used to be the only way to use multiple processors, it also involved a number of shortcomings related to the lack of synchronization between processes (health-checks, peers, stick-tables, stats, ...) which do not affect threads. As such, any modern configuration is strongly encouraged to migrate away from "nbproc" to "nbthread". "nbthread" also works when HAProxy is started in foreground. On some platforms supporting CPU affinity, when nbproc is not used, the default "nbthread" value is automatically set to the number of CPUs the process is bound to upon startup. This means that the thread count can easily be adjusted from the calling process using commands like "taskset" or "cpuset". Otherwise, this value defaults to 1. The default value is reported in the output of "haproxy -vv". See also "nbproc".
Writes PIDs of all daemons into file <pidfile>. This option is equivalent to the "-p" command line argument. The file must be accessible to the user starting the process. See also "daemon".
Sets environment variable <name> to value <value>. If the variable exists, it is NOT overwritten. The changes immediately take effect so that the next line in the configuration file sees the new value. See also "setenv", "resetenv", and "unsetenv".
Removes all environment variables except the ones specified in argument. It allows to use a clean controlled environment before setting new values with setenv or unsetenv. Please note that some internal functions may make use of some environment variables, such as time manipulation functions, but also OpenSSL or even external checks. This must be used with extreme care and only after complete validation. The changes immediately take effect so that the next line in the configuration file sees the new environment. See also "setenv", "presetenv", and "unsetenv".
Limits the stats socket to a certain set of processes numbers. By default the stats socket is bound to all processes, causing a warning to be emitted when nbproc is greater than 1 because there is no way to select the target process when connecting. However, by using this setting, it becomes possible to pin the stats socket to a specific set of processes, typically the first one. The warning will automatically be disabled when this setting is used, whatever the number of processes used. The maximum process ID depends on the machine's word size (32 or 64). Ranges can be partially defined. The higher bound can be omitted. In such case, it is replaced by the corresponding maximum value. A better option consists in using the "process" setting of the "stats socket" line to force the process on each line.
Specifies the directory prefix to be prepended in front of all servers state file names which do not start with a '/'. See also "server-state-file", "load-server-state-from-file" and "server-state-file-name".
Specifies the path to the file containing state of servers. If the path starts with a slash ('/'), it is considered absolute, otherwise it is considered relative to the directory specified using "server-state-base" (if set) or to the current directory. Before reloading HAProxy, it is possible to save the servers' current state using the stats command "show servers state". The output of this command must be written in the file pointed by <file>. When starting up, before handling traffic, HAProxy will read, load and apply state for each server found in the file and available in its current running configuration. See also "server-state-base" and "show servers state", "load-server-state-from-file" and "server-state-file-name"
Sets environment variable <name> to value <value>. If the variable exists, it is overwritten. The changes immediately take effect so that the next line in the configuration file sees the new value. See also "presetenv", "resetenv", and "unsetenv".
This option is better left disabled by default and enabled only upon a developer's request. It has no impact on performance nor stability but will try hard to re-enable core dumps that were possibly disabled by file size limitations (ulimit -f), core size limitations (ulimit -c), or "dumpability" of a process after changing its UID/GID (such as /proc/sys/fs/suid_dumpable on Linux). Core dumps might still be limited by the current directory's permissions (check what directory the file is started from), the chroot directory's permission (it may be needed to temporarily disable the chroot directive or to move it to a dedicated writable location), or any other system-specific constraint. For example, some Linux flavours are notorious for replacing the default core file with a path to an executable not even installed on the system (check /proc/sys/kernel/core_pattern). Often, simply writing "core", "core.%p" or "/var/log/core/core.%p" addresses the issue. When trying to enable this option waiting for a rare issue to re-appear, it's often a good idea to first try to obtain such a dump by issuing, for example, "kill -11" to the haproxy process and verify that it leaves a core where expected when dying.
This setting is only available when support for OpenSSL was built in. It sets the default string describing the list of cipher algorithms ("cipher suite") that are negotiated during the SSL/TLS handshake up to TLSv1.2 for all "bind" lines which do not explicitly define theirs. The format of the string is defined in "man 1 ciphers" from OpenSSL man pages. For background information and recommendations see e.g. (https://wiki.mozilla.org/Security/Server_Side_TLS) and (https://mozilla.github.io/server-side-tls/ssl-config-generator/). For TLSv1.3 cipher configuration, please check the "ssl-default-bind-ciphersuites" keyword. Please check the "bind" keyword for more information.
This setting is only available when support for OpenSSL was built in and OpenSSL 1.1.1 or later was used to build HAProxy. It sets the default string describing the list of cipher algorithms ("cipher suite") that are negotiated during the TLSv1.3 handshake for all "bind" lines which do not explicitly define theirs. The format of the string is defined in "man 1 ciphers" from OpenSSL man pages under the section "ciphersuites". For cipher configuration for TLSv1.2 and earlier, please check the "ssl-default-bind-ciphers" keyword. Please check the "bind" keyword for more information.
This setting is only available when support for OpenSSL was built in. It sets default ssl-options to force on all "bind" lines. Please check the "bind" keyword to see available options.
global
ssl-default-bind-options ssl-min-ver TLSv1.0 no-tls-tickets
This setting is only available when support for OpenSSL was built in. It sets the default string describing the list of cipher algorithms that are negotiated during the SSL/TLS handshake up to TLSv1.2 with the server, for all "server" lines which do not explicitly define theirs. The format of the string is defined in "man 1 ciphers" from OpenSSL man pages. For background information and recommendations see e.g. (https://wiki.mozilla.org/Security/Server_Side_TLS) and (https://mozilla.github.io/server-side-tls/ssl-config-generator/). For TLSv1.3 cipher configuration, please check the "ssl-default-server-ciphersuites" keyword. Please check the "server" keyword for more information.
This setting is only available when support for OpenSSL was built in and OpenSSL 1.1.1 or later was used to build HAProxy. It sets the default string describing the list of cipher algorithms that are negotiated during the TLSv1.3 handshake with the server, for all "server" lines which do not explicitly define theirs. The format of the string is defined in "man 1 ciphers" from OpenSSL man pages under the section "ciphersuites". For cipher configuration for TLSv1.2 and earlier, please check the "ssl-default-server-ciphers" keyword. Please check the "server" keyword for more information.
This setting is only available when support for OpenSSL was built in. It sets default ssl-options to force on all "server" lines. Please check the "server" keyword to see available options.
This setting is only available when support for OpenSSL was built in. It sets
the default DH parameters that are used during the SSL/TLS handshake when
ephemeral Diffie-Hellman (DHE) key exchange is used, for all "bind" lines
which do not explicitly define theirs. It will be overridden by custom DH
parameters found in a bind certificate file if any. If custom DH parameters
are not specified either by using ssl-dh-param-file or by setting them
directly in the certificate file, pre-generated DH parameters of the size
specified by tune.ssl.default-dh-param will be used. Custom parameters are
known to be more secure and therefore their use is recommended.
Custom DH parameters may be generated by using the OpenSSL command
"openssl dhparam <size>", where size should be at least 2048, as 1024-bit DH
parameters should not be considered secure anymore.
The default behavior for SSL verify on servers side. If specified to 'none', servers certificates are not verified. The default is 'required' except if forced using cmdline option '-dV'.
Binds a UNIX socket to <path> or a TCPv4/v6 address to <address:port>. Connections to this socket will return various statistics outputs and even allow some commands to be issued to change some runtime settings. Please consult section 9.3 "Unix Socket commands" of Management Guide for more details. All parameters supported by "bind" lines are supported, for instance to restrict access to some users or their access rights. Please consult section 5.1 for more information.
The default timeout on the stats socket is set to 10 seconds. It is possible to change this value with "stats timeout". The value must be passed in milliseconds, or be suffixed by a time unit among { us, ms, s, m, h, d }.
By default, the stats socket is limited to 10 concurrent connections. It is possible to change this value with "stats maxconn".
Changes the process's user ID to <number>. It is recommended that the user ID is dedicated to HAProxy or to a small set of similar daemons. HAProxy must be started with superuser privileges in order to be able to switch to another one. See also "gid" and "user".
Sets the maximum number of per-process file-descriptors to <number>. By default, it is automatically computed, so it is recommended not to use this option.
Fixes common settings to UNIX listening sockets declared in "bind" statements. This is mainly used to simplify declaration of those UNIX sockets and reduce the risk of errors, since those settings are most commonly required but are also process-specific. The <prefix> setting can be used to force all socket path to be relative to that directory. This might be needed to access another component's chroot. Note that those paths are resolved before haproxy chroots itself, so they are absolute. The <mode>, <user>, <uid>, <group> and <gid> all have the same meaning as their homonyms used by the "bind" statement. If both are specified, the "bind" statement has priority, meaning that the "unix-bind" settings may be seen as process-wide default settings.
Removes environment variables specified in arguments. This can be useful to hide some sensitive information that are occasionally inherited from the user's environment during some operations. Variables which did not exist are silently ignored so that after the operation, it is certain that none of these variables remain. The changes immediately take effect so that the next line in the configuration file will not see these variables. See also "setenv", "presetenv", and "resetenv".
Similar to "uid" but uses the UID of user name <user name> from /etc/passwd. See also "uid" and "group".
Only letters, digits, hyphen and underscore are allowed, like in DNS names. This statement is useful in HA configurations where two or more processes or servers share the same IP address. By setting a different node-name on all nodes, it becomes easy to immediately spot what server is handling the traffic.
Add a text that describes the instance. Please note that it is required to escape certain characters (# for example) and this text is inserted into a html page so you should avoid using "<" and ">" characters.
The path of the 51Degrees data file to provide device detection services. The file should be unzipped and accessible by HAProxy with relevant permissions. Please note that this option is only available when haproxy has been compiled with USE_51DEGREES.
A list of 51Degrees property names to be load from the dataset. A full list of names is available on the 51Degrees website: https://51degrees.com/resources/property-dictionary Please note that this option is only available when haproxy has been compiled with USE_51DEGREES.
A char that will be appended to every property value in a response header containing 51Degrees results. If not set that will be set as ','. Please note that this option is only available when haproxy has been compiled with USE_51DEGREES.
Sets the size of the 51Degrees converter cache to <number> entries. This is an LRU cache which reminds previous device detections and their results. By default, this cache is disabled. Please note that this option is only available when haproxy has been compiled with USE_51DEGREES.
The path of the WURFL data file to provide device detection services. The file should be accessible by HAProxy with relevant permissions. Please note that this option is only available when haproxy has been compiled with USE_WURFL=1.
A space-delimited list of WURFL capabilities, virtual capabilities, property names we plan to use in injected headers. A full list of capability and virtual capability names is available on the Scientiamobile website : https://www.scientiamobile.com/wurflCapability Valid WURFL properties are: - wurfl_id Contains the device ID of the matched device. - wurfl_root_id Contains the device root ID of the matched device. - wurfl_isdevroot Tells if the matched device is a root device. Possible values are "TRUE" or "FALSE". - wurfl_useragent The original useragent coming with this particular web request. - wurfl_api_version Contains a string representing the currently used Libwurfl API version. - wurfl_info A string containing information on the parsed wurfl.xml and its full path. - wurfl_last_load_time Contains the UNIX timestamp of the last time WURFL has been loaded successfully. - wurfl_normalized_useragent The normalized useragent. Please note that this option is only available when haproxy has been compiled with USE_WURFL=1.
A char that will be used to separate values in a response header containing WURFL results. If not set that a comma (',') will be used by default. Please note that this option is only available when haproxy has been compiled with USE_WURFL=1.
A list of WURFL patch file paths. Note that patches are loaded during startup thus before the chroot. Please note that this option is only available when haproxy has been compiled with USE_WURFL=1.
Sets the WURFL Useragent cache size. For faster lookups, already processed user agents are kept in a LRU cache : - "0" : no cache is used. - <size> : size of lru cache in elements. Please note that this option is only available when haproxy has been compiled with USE_WURFL=1.
In some situations, especially when dealing with low latency on processors supporting a variable frequency or when running inside virtual machines, each time the process waits for an I/O using the poller, the processor goes back to sleep or is offered to another VM for a long time, and it causes excessively high latencies. This option provides a solution preventing the processor from sleeping by always using a null timeout on the pollers. This results in a significant latency reduction (30 to 100 microseconds observed) at the expense of a risk to overheat the processor. It may even be used with threads, in which case improperly bound threads may heavily conflict, resulting in a worse performance and high values for the CPU stolen fields in "show info" output, indicating which threads are misconfigured. It is important not to let the process run on the same processor as the network interrupts when this option is used. It is also better to avoid using it on multiple CPU threads sharing the same core. This option is disabled by default. If it has been enabled, it may still be forcibly disabled by prefixing it with the "no" keyword. It is ignored by the "select" and "poll" pollers. This option is automatically disabled on old processes in the context of seamless reload; it avoids too much cpu conflicts when multiple processes stay around for some time waiting for the end of their current connections.
By default, haproxy tries to spread the start of health checks across the smallest health check interval of all the servers in a farm. The principle is to avoid hammering services running on the same server. But when using large check intervals (10 seconds or more), the last servers in the farm take some time before starting to be tested, which can be a problem. This parameter is used to enforce an upper bound on delay between the first and the last check, even if the servers' check intervals are larger. When servers run with shorter intervals, their intervals will be respected though.
Sets the maximum per-process number of concurrent connections to <number>. It is equivalent to the command-line argument "-n". Proxies will stop accepting connections when this limit is reached. The "ulimit-n" parameter is automatically adjusted according to this value. See also "ulimit-n". Note: the "select" poller cannot reliably use more than 1024 file descriptors on some platforms. If your platform only supports select and reports "select FAILED" on startup, you need to reduce maxconn until it works (slightly below 500 in general). If this value is not set, it will automatically be calculated based on the current file descriptors limit reported by the "ulimit -n" command, possibly reduced to a lower value if a memory limit is enforced, based on the buffer size, memory allocated to compression, SSL cache size, and use or not of SSL and the associated maxsslconn (which can also be automatic).
Sets the maximum per-process number of connections per second to <number>. Proxies will stop accepting connections when this limit is reached. It can be used to limit the global capacity regardless of each frontend capacity. It is important to note that this can only be used as a service protection measure, as there will not necessarily be a fair share between frontends when the limit is reached, so it's a good idea to also limit each frontend to some value close to its expected share. Also, lowering tune.maxaccept can improve fairness.
Sets the maximum per-process input compression rate to <number> kilobytes per second. For each session, if the maximum is reached, the compression level will be decreased during the session. If the maximum is reached at the beginning of a session, the session will not compress at all. If the maximum is not reached, the compression level will be increased up to tune.comp.maxlevel. A value of zero means there is no limit, this is the default value.
Sets the maximum CPU usage HAProxy can reach before stopping the compression for new requests or decreasing the compression level of current requests. It works like 'maxcomprate' but measures CPU usage instead of incoming data bandwidth. The value is expressed in percent of the CPU used by haproxy. In case of multiple processes (nbproc > 1), each process manages its individual usage. A value of 100 disable the limit. The default value is 100. Setting a lower value will prevent the compression work from slowing the whole process down and from introducing high latencies.
Sets the maximum per-process number of pipes to <number>. Currently, pipes are only used by kernel-based tcp splicing. Since a pipe contains two file descriptors, the "ulimit-n" value will be increased accordingly. The default value is maxconn/4, which seems to be more than enough for most heavy usages. The splice code dynamically allocates and releases pipes, and can fall back to standard copy, so setting this value too low may only impact performance.
Sets the maximum per-process number of sessions per second to <number>. Proxies will stop accepting connections when this limit is reached. It can be used to limit the global capacity regardless of each frontend capacity. It is important to note that this can only be used as a service protection measure, as there will not necessarily be a fair share between frontends when the limit is reached, so it's a good idea to also limit each frontend to some value close to its expected share. Also, lowering tune.maxaccept can improve fairness.
Sets the maximum per-process number of concurrent SSL connections to <number>. By default there is no SSL-specific limit, which means that the global maxconn setting will apply to all connections. Setting this limit avoids having openssl use too much memory and crash when malloc returns NULL (since it unfortunately does not reliably check for such conditions). Note that the limit applies both to incoming and outgoing connections, so one connection which is deciphered then ciphered accounts for 2 SSL connections. If this value is not set, but a memory limit is enforced, this value will be automatically computed based on the memory limit, maxconn, the buffer size, memory allocated to compression, SSL cache size, and use of SSL in either frontends, backends or both. If neither maxconn nor maxsslconn are specified when there is a memory limit, haproxy will automatically adjust these values so that 100% of the connections can be made over SSL with no risk, and will consider the sides where it is enabled (frontend, backend, both).
Sets the maximum per-process number of SSL sessions per second to <number>. SSL listeners will stop accepting connections when this limit is reached. It can be used to limit the global SSL CPU usage regardless of each frontend capacity. It is important to note that this can only be used as a service protection measure, as there will not necessarily be a fair share between frontends when the limit is reached, so it's a good idea to also limit each frontend to some value close to its expected share. It is also important to note that the sessions are accounted before they enter the SSL stack and not after, which also protects the stack against bad handshakes. Also, lowering tune.maxaccept can improve fairness.
Sets the maximum amount of RAM in megabytes per process usable by the zlib. When the maximum amount is reached, future sessions will not compress as long as RAM is unavailable. When sets to 0, there is no limit. The default value is 0. The value is available in bytes on the UNIX socket with "show info" on the line "MaxZlibMemUsage", the memory used by zlib is "ZlibMemUsage" in bytes.
Disables the use of the "epoll" event polling system on Linux. It is equivalent to the command-line argument "-de". The next polling system used will generally be "poll". See also "nopoll".
Disables the use of the "kqueue" event polling system on BSD. It is equivalent to the command-line argument "-dk". The next polling system used will generally be "poll". See also "nopoll".
Disables the use of the event ports event polling system on SunOS systems derived from Solaris 10 and later. It is equivalent to the command-line argument "-dv". The next polling system used will generally be "poll". See also "nopoll".
Disables the use of the "poll" event polling system. It is equivalent to the command-line argument "-dp". The next polling system used will be "select". It should never be needed to disable "poll" since it's available on all platforms supported by HAProxy. See also "nokqueue", "noepoll" and "noevports".
Disables the use of kernel tcp splicing between sockets on Linux. It is equivalent to the command line argument "-dS". Data will then be copied using conventional and more portable recv/send calls. Kernel tcp splicing is limited to some very recent instances of kernel 2.6. Most versions between 2.6.25 and 2.6.28 are buggy and will forward corrupted data, so they must not be used. This option makes it easier to globally disable kernel splicing in case of doubt. See also "option splice-auto", "option splice-request" and "option splice-response".
Disables the use of getaddrinfo(3) for name resolving. It is equivalent to the command line argument "-dG". Deprecated gethostbyname(3) will be used.
Disables the use of SO_REUSEPORT - see socket(7). It is equivalent to the command line argument "-dR".
Enables ('on') or disables ('off') per-task CPU profiling. When set to 'auto' the profiling automatically turns on a thread when it starts to suffer from an average latency of 1000 microseconds or higher as reported in the "avg_loop_us" activity field, and automatically turns off when the latency returns below 990 microseconds (this value is an average over the last 1024 loops so it does not vary quickly and tends to significantly smooth short spikes). It may also spontaneously trigger from time to time on overloaded systems, containers, or virtual machines, or when the system swaps (which must absolutely never happen on a load balancer). CPU profiling per task can be very convenient to report where the time is spent and which requests have what effect on which other request. Enabling it will typically affect the overall's performance by less than 1%, thus it is recommended to leave it to the default 'auto' value so that it only operates when a problem is identified. This feature requires a system supporting the clock_gettime(2) syscall with clock identifiers CLOCK_MONOTONIC and CLOCK_THREAD_CPUTIME_ID, otherwise the reported time will be zero. This option may be changed at run time using "set profiling" on the CLI.
Sometimes it is desirable to avoid sending agent and health checks to servers at exact intervals, for instance when many logical servers are located on the same physical server. With the help of this parameter, it becomes possible to add some randomness in the check interval between 0 and +/- 50%. A value between 2 and 5 seems to show good results. The default value remains at 0.
Sets the OpenSSL engine to <name>. List of valid values for <name> may be obtained using the command "openssl engine". This statement may be used multiple times, it will simply enable multiple crypto engines. Referencing an unsupported engine will prevent haproxy from starting. Note that many engines will lead to lower HTTPS performance than pure software with recent processors. The optional command "algo" sets the default algorithms an ENGINE will supply using the OPENSSL function ENGINE_set_default_string(). A value of "ALL" uses the engine for all cryptographic operations. If no list of algo is specified then the value of "ALL" is used. A comma-separated list of different algorithms may be specified, including: RSA, DSA, DH, EC, RAND, CIPHERS, DIGESTS, PKEY, PKEY_CRYPTO, PKEY_ASN1. This is the same format that openssl configuration file uses: https://www.openssl.org/docs/man1.0.2/apps/config.html
Adds SSL_MODE_ASYNC mode to the SSL context. This enables asynchronous TLS I/O operations if asynchronous capable SSL engines are used. The current implementation supports a maximum of 32 engines. The Openssl ASYNC API doesn't support moving read/write buffers and is not compliant with haproxy's buffer management. So the asynchronous mode is disabled on read/write operations (it is only enabled during initial and renegotiation handshakes).
Sets a hard limit on the number of buffers which may be allocated per process. The default value is zero which means unlimited. The minimum non-zero value will always be greater than "tune.buffers.reserve" and should ideally always be about twice as large. Forcing this value can be particularly useful to limit the amount of memory a process may take, while retaining a sane behavior. When this limit is reached, sessions which need a buffer wait for another one to be released by another session. Since buffers are dynamically allocated and released, the waiting time is very short and not perceptible provided that limits remain reasonable. In fact sometimes reducing the limit may even increase performance by increasing the CPU cache's efficiency. Tests have shown good results on average HTTP traffic with a limit to 1/10 of the expected global maxconn setting, which also significantly reduces memory usage. The memory savings come from the fact that a number of connections will not allocate 2*tune.bufsize. It is best not to touch this value unless advised to do so by an haproxy core developer.
Sets the number of buffers which are pre-allocated and reserved for use only during memory shortage conditions resulting in failed memory allocations. The minimum value is 2 and is also the default. There is no reason a user would want to change this value, it's mostly aimed at haproxy core developers.
Sets the buffer size to this size (in bytes). Lower values allow more sessions to coexist in the same amount of RAM, and higher values allow some applications with very large cookies to work. The default value is 16384 and can be changed at build time. It is strongly recommended not to change this from the default value, as very low values will break some services such as statistics, and values larger than default size will increase memory usage, possibly causing the system to run out of memory. At least the global maxconn parameter should be decreased by the same factor as this one is increased. In addition, use of HTTP/2 mandates that this value must be 16384 or more. If an HTTP request is larger than (tune.bufsize - tune.maxrewrite), haproxy will return HTTP 400 (Bad Request) error. Similarly if an HTTP response is larger than this size, haproxy will return HTTP 502 (Bad Gateway). Note that the value set using this parameter will automatically be rounded up to the next multiple of 8 on 32-bit machines and 16 on 64-bit machines.
Sets the check buffer size to this size (in bytes). Higher values may help find string or regex patterns in very large pages, though doing so may imply more memory and CPU usage. The default value is 16384 and can be changed at build time. It is not recommended to change this value, but to use better checks whenever possible.
Sets the maximum compression level. The compression level affects CPU usage during compression. This value affects CPU usage during compression. Each session using compression initializes the compression algorithm with this value. The default value is 1.
If compiled with DEBUG_FAIL_ALLOC, gives the percentage of chances an allocation attempt fails. Must be between 0 (no failure) and 100 (no success). This is useful to debug and make sure memory failures are handled gracefully.
Sets the HTTP/2 dynamic header table size. It defaults to 4096 bytes and cannot be larger than 65536 bytes. A larger value may help certain clients send more compact requests, depending on their capabilities. This amount of memory is consumed for each HTTP/2 connection. It is recommended not to change it.
Sets the HTTP/2 initial window size, which is the number of bytes the client can upload before waiting for an acknowledgment from haproxy. This setting only affects payload contents (i.e. the body of POST requests), not headers. The default value is 65535, which roughly allows up to 5 Mbps of upload bandwidth per client over a network showing a 100 ms ping time, or 500 Mbps over a 1-ms local network. It can make sense to increase this value to allow faster uploads, or to reduce it to increase fairness when dealing with many clients. It doesn't affect resource usage.
Sets the HTTP/2 maximum number of concurrent streams per connection (ie the number of outstanding requests on a single connection). The default value is 100. A larger one may slightly improve page load time for complex sites when visited over high latency networks, but increases the amount of resources a single client may allocate. A value of zero disables the limit so a single client may create as many streams as allocatable by haproxy. It is highly recommended not to change this value.
Sets the HTTP/2 maximum frame size that haproxy announces it is willing to receive to its peers. The default value is the largest between 16384 and the buffer size (tune.bufsize). In any case, haproxy will not announce support for frame sizes larger than buffers. The main purpose of this setting is to allow to limit the maximum frame size setting when using large buffers. Too large frame sizes might have performance impact or cause some peers to misbehave. It is highly recommended not to change this value.
Sets the maximum length of captured cookies. This is the maximum value that the "capture cookie xxx len yyy" will be allowed to take, and any upper value will automatically be truncated to this one. It is important not to set too high a value because all cookie captures still allocate this size whatever their configured value (they share a same pool). This value is per request per response, so the memory allocated is twice this value per connection. When not specified, the limit is set to 63 characters. It is recommended not to change this value.
Sets the maximum length of request URI in logs. This prevents truncating long request URIs with valuable query strings in log lines. This is not related to syslog limits. If you increase this limit, you may also increase the 'log ... len yyy' parameter. Your syslog daemon may also need specific configuration directives too. The default value is 1024.
Sets the maximum number of headers in a request. When a request comes with a number of headers greater than this value (including the first line), it is rejected with a "400 Bad Request" status code. Similarly, too large responses are blocked with "502 Bad Gateway". The default value is 101, which is enough for all usages, considering that the widely deployed Apache server uses the same limit. It can be useful to push this limit further to temporarily allow a buggy application to work by the time it gets fixed. The accepted range is 1..32767. Keep in mind that each new header consumes 32bits of memory for each session, so don't push this limit too high.
Sets the duration after which haproxy will consider that an empty buffer is probably associated with an idle stream. This is used to optimally adjust some packet sizes while forwarding large and small data alternatively. The decision to use splice() or to send large buffers in SSL is modulated by this parameter. The value is in milliseconds between 0 and 65535. A value of zero means that haproxy will not try to detect idle streams. The default is 1000, which seems to correctly detect end user pauses (e.g. read a page before clicking). There should be no reason for changing this value. Please check tune.ssl.maxrecord below.
Enables ('on') or disables ('off') the listener's multi-queue accept which
spreads the incoming traffic to all threads a "bind" line is allowed to run
on instead of taking them for itself. This provides a smoother traffic
distribution and scales much better, especially in environments where threads
may be unevenly loaded due to external activity (network interrupts colliding
with one thread for example). This option is enabled by default, but it may
be forcefully disabled for troubleshooting or for situations where it is
estimated that the operating system already provides a good enough
distribution and connections are extremely short-lived.
This directive forces the Lua engine to execute a yield each <number> of instructions executed. This permits interrupting a long script and allows the HAProxy scheduler to process other tasks like accepting connections or forwarding traffic. The default value is 10000 instructions. If HAProxy often executes some Lua code but more responsiveness is required, this value can be lowered. If the Lua code is quite long and its result is absolutely required to process the data, the <number> can be increased.
Sets the maximum amount of RAM in megabytes per process usable by Lua. By default it is zero which means unlimited. It is important to set a limit to ensure that a bug in a script will not result in the system running out of memory.
This is the execution timeout for the Lua sessions. This is useful for preventing infinite loops or spending too much time in Lua. This timeout counts only the pure Lua runtime. If the Lua does a sleep, the sleep is not taken in account. The default timeout is 4s.
Purpose is the same as "tune.lua.session-timeout", but this timeout is dedicated to the tasks. By default, this timeout isn't set because a task may remain alive during of the lifetime of HAProxy. For example, a task used to check servers.
This is the execution timeout for the Lua services. This is useful for preventing infinite loops or spending too much time in Lua. This timeout counts only the pure Lua runtime. If the Lua does a sleep, the sleep is not taken in account. The default timeout is 4s.
Sets the maximum number of consecutive connections a process may accept in a row before switching to other work. In single process mode, higher numbers give better performance at high connection rates. However in multi-process modes, keeping a bit of fairness between processes generally is better to increase performance. This value applies individually to each listener, so that the number of processes a listener is bound to is taken into account. This value defaults to 64. In multi-process mode, it is divided by twice the number of processes the listener is bound to. Setting this value to -1 completely disables the limitation. It should normally not be needed to tweak this value.
Sets the maximum amount of events that can be processed at once in a call to the polling system. The default value is adapted to the operating system. It has been noticed that reducing it below 200 tends to slightly decrease latency at the expense of network bandwidth, and increasing it above 200 tends to trade latency for slightly increased bandwidth.
Sets the reserved buffer space to this size in bytes. The reserved space is used for header rewriting or appending. The first reads on sockets will never fill more than bufsize-maxrewrite. Historically it has defaulted to half of bufsize, though that does not make much sense since there are rarely large numbers of headers to add. Setting it too high prevents processing of large requests or responses. Setting it too low prevents addition of new headers to already large requests or to POST requests. It is generally wise to set it to about 1024. It is automatically readjusted to half of bufsize if it is larger than that. This means you don't have to worry about it when changing bufsize.
Sets the size of the pattern lookup cache to <number> entries. This is an LRU cache which reminds previous lookups and their results. It is used by ACLs and maps on slow pattern lookups, namely the ones using the "sub", "reg", "dir", "dom", "end", "bin" match methods as well as the case-insensitive strings. It applies to pattern expressions which means that it will be able to memorize the result of a lookup among all the patterns specified on a configuration line (including all those loaded from files). It automatically invalidates entries which are updated using HTTP actions or on the CLI. The default cache size is set to 10000 entries, which limits its footprint to about 5 MB per process/thread on 32-bit systems and 8 MB per process/thread on 64-bit systems, as caches are thread/process local. There is a very low risk of collision in this cache, which is in the order of the size of the cache divided by 2^64. Typically, at 10000 requests per second with the default cache size of 10000 entries, there's 1% chance that a brute force attack could cause a single collision after 60 years, or 0.1% after 6 years. This is considered much lower than the risk of a memory corruption caused by aging components. If this is not acceptable, the cache can be disabled by setting this parameter to 0.
Sets the kernel pipe buffer size to this size (in bytes). By default, pipes are the default size for the system. But sometimes when using TCP splicing, it can improve performance to increase pipe sizes, especially if it is suspected that pipes are not filled and that many calls to splice() are performed. This has an impact on the kernel's memory footprint, so this must not be changed if impacts are not understood.
This setting sets the max number of file descriptors (in percentage) used by haproxy globally against the maximum number of file descriptors haproxy can use before we start killing idle connections when we can't reuse a connection and we have to create a new one. The default is 25 (one quarter of the file descriptor will mean that roughly half of the maximum front connections can keep an idle connection behind, anything beyond this probably doesn't make much sense in the general case when targeting connection reuse).
This setting sets the max number of file descriptors (in percentage) used by haproxy globally against the maximum number of file descriptors haproxy can use before we stop putting connection into the idle pool for reuse. The default is 20.
Forces the kernel socket receive buffer size on the client or the server side to the specified value in bytes. This value applies to all TCP/HTTP frontends and backends. It should normally never be set, and the default size (0) lets the kernel auto-tune this value depending on the amount of available memory. However it can sometimes help to set it to very low values (e.g. 4096) in order to save kernel memory by preventing it from buffering too large amounts of received data. Lower values will significantly increase CPU usage though.
HAProxy uses some hints to detect that a short read indicates the end of the socket buffers. One of them is that a read returns more than <recv_enough> bytes, which defaults to 10136 (7 segments of 1448 each). This default value may be changed by this setting to better deal with workloads involving lots of short messages such as telnet or SSH sessions.
Sets the maximum amount of task that can be processed at once when running tasks. The default value is 200. Increasing it may incur latency when dealing with I/Os, making it too small can incur extra overhead.
Forces the kernel socket send buffer size on the client or the server side to the specified value in bytes. This value applies to all TCP/HTTP frontends and backends. It should normally never be set, and the default size (0) lets the kernel auto-tune this value depending on the amount of available memory. However it can sometimes help to set it to very low values (e.g. 4096) in order to save kernel memory by preventing it from buffering too large amounts of received data. Lower values will significantly increase CPU usage though. Another use case is to prevent write timeouts with extremely slow clients due to the kernel waiting for a large part of the buffer to be read before notifying haproxy again.
Sets the size of the global SSL session cache, in a number of blocks. A block
is large enough to contain an encoded session without peer certificate.
An encoded session with peer certificate is stored in multiple blocks
depending on the size of the peer certificate. A block uses approximately
200 bytes of memory. The default value may be forced at build time, otherwise
defaults to 20000. When the cache is full, the most idle entries are purged
and reassigned. Higher values reduce the occurrence of such a purge, hence
the number of CPU-intensive SSL handshakes by ensuring that all users keep
their session as long as possible. All entries are pre-allocated upon startup
and are shared between all processes if "nbproc" is greater than 1. Setting
this value to 0 disables the SSL session cache.
This option disables SSL session cache sharing between all processes. It should normally not be used since it will force many renegotiations due to clients hitting a random process. But it may be required on some operating systems where none of the SSL cache synchronization method may be used. In this case, adding a first layer of hash-based load balancing before the SSL layer might limit the impact of the lack of session sharing.
Sets how long a cached SSL session may remain valid. This time is expressed in seconds and defaults to 300 (5 min). It is important to understand that it does not guarantee that sessions will last that long, because if the cache is full, the longest idle sessions will be purged despite their configured lifetime. The real usefulness of this setting is to prevent sessions from being used for too long.
Sets the maximum amount of bytes passed to SSL_write() at a time. Default value 0 means there is no limit. Over SSL/TLS, the client can decipher the data only once it has received a full record. With large records, it means that clients might have to download up to 16kB of data before starting to process them. Limiting the value can improve page load times on browsers located over high latency or low bandwidth networks. It is suggested to find optimal values which fit into 1 or 2 TCP segments (generally 1448 bytes over Ethernet with TCP timestamps enabled, or 1460 when timestamps are disabled), keeping in mind that SSL/TLS add some overhead. Typical values of 1419 and 2859 gave good results during tests. Use "strace -e trace=write" to find the best value. HAProxy will automatically switch to this setting after an idle stream has been detected (see tune.idletimer above).
Sets the maximum size of the Diffie-Hellman parameters used for generating the ephemeral/temporary Diffie-Hellman key in case of DHE key exchange. The final size will try to match the size of the server's RSA (or DSA) key (e.g, a 2048 bits temporary DH key for a 2048 bits RSA key), but will not exceed this maximum value. Default value if 1024. Only 1024 or higher values are allowed. Higher values will increase the CPU load, and values greater than 1024 bits are not supported by Java 7 and earlier clients. This value is not used if static Diffie-Hellman parameters are supplied either directly in the certificate file or by using the ssl-dh-param-file parameter.
Sets the size of the cache used to store generated certificates to <number> entries. This is a LRU cache. Because generating a SSL certificate dynamically is expensive, they are cached. The default cache size is set to 1000 entries.
Sets the maximum size of the buffer used for capturing client-hello cipher list. If the value is 0 (default value) the capture is disabled, otherwise a buffer is allocated for each SSL/TLS connection.
These five tunes help to manage the maximum amount of memory used by the variables system. "global" limits the overall amount of memory available for all scopes. "proc" limits the memory for the process scope, "sess" limits the memory for the session scope, "txn" for the transaction scope, and "reqres" limits the memory for each request or response processing. Memory accounting is hierarchical, meaning more coarse grained limits include the finer grained ones: "proc" includes "sess", "sess" includes "txn", and "txn" includes "reqres". For example, when "tune.vars.sess-max-size" is limited to 100, "tune.vars.txn-max-size" and "tune.vars.reqres-max-size" cannot exceed 100 either. If we create a variable "txn.var" that contains 100 bytes, all available space is consumed. Notice that exceeding the limits at runtime will not result in an error message, but values might be cut off or corrupted. So make sure to accurately plan for the amount of space needed to store all your variables.
Sets the memLevel parameter in zlib initialization for each session. It defines how much memory should be allocated for the internal compression state. A value of 1 uses minimum memory but is slow and reduces compression ratio, a value of 9 uses maximum memory for optimal speed. Can be a value between 1 and 9. The default value is 8.
Sets the window size (the size of the history buffer) as a parameter of the zlib initialization for each session. Larger values of this parameter result in better compression at the expense of memory usage. Can be a value between 8 and 15. The default value is 15.
Enables debug mode which dumps to stdout all exchanges, and disables forking into background. It is the equivalent of the command-line argument "-d". It should never be used in a production configuration since it may prevent full system startup.
Do not display any message during startup. It is equivalent to the command- line argument "-q".
It is possible to control access to frontend/backend/listen sections or to http stats by allowing only authenticated and authorized users. To do this, it is required to create at least one userlist and to define users.
Creates new userlist with name <listname>. Many independent userlists can be used to store authentication & authorization data for independent customers.
Adds group <groupname> to the current userlist. It is also possible to attach users to this group by using a comma separated list of names proceeded by "users" keyword.
Adds user <username> to the current userlist. Both secure (encrypted) and insecure (unencrypted) passwords can be used. Encrypted passwords are evaluated using the crypt(3) function, so depending on the system's capabilities, different algorithms are supported. For example, modern Glibc based Linux systems support MD5, SHA-256, SHA-512, and, of course, the classic DES-based method of encrypting passwords. Attention: Be aware that using encrypted passwords might cause significantly increased CPU usage, depending on the number of requests, and the algorithm used. For any of the hashed variants, the password for each request must be processed through the chosen algorithm, before it can be compared to the value specified in the config file. Most current algorithms are deliberately designed to be expensive to compute to achieve resistance against brute force attacks. They do not simply salt/hash the clear text password once, but thousands of times. This can quickly become a major factor in haproxy's overall CPU consumption!
userlist L1
group G1 users tiger,scott
group G2 users xdb,scott
user tiger password $6$k6y3o.eP$JlKBx9za9667qe4(...)xHSwRv6J.C0/D7cV91
user scott insecure-password elgato
user xdb insecure-password hello
userlist L2
group G1
group G2
user tiger password $6$k6y3o.eP$JlKBx(...)xHSwRv6J.C0/D7cV91 groups G1
user scott insecure-password elgato groups G1,G2
user xdb insecure-password hello groups G2
Please note that both lists are functionally identical.
It is possible to propagate entries of any data-types in stick-tables between several haproxy instances over TCP connections in a multi-master fashion. Each instance pushes its local updates and insertions to remote peers. The pushed values overwrite remote ones without aggregation. Interrupted exchanges are automatically detected and recovered from the last known point. In addition, during a soft restart, the old process connects to the new one using such a TCP connection to push all its entries before the new process tries to connect to other peers. That ensures very fast replication during a reload, it typically takes a fraction of a second even for large tables. Note that Server IDs are used to identify servers remotely, so it is important that configurations look similar or at least that the same IDs are forced on each server on all participants.
Creates a new peer list with name <peersect>. It is an independent section, which is referenced by one or more stick-tables.
Defines the binding parameters of the local peer of this "peers" section. Such lines are not supported with "peer" line in the same "peers" section.
Disables a peers section. It disables both listening and any synchronization related to this section. This is provided to disable synchronization of stick tables without having to comment out all "peers" references.
Defines the binding parameters for the local peer, excepted its address.
Change default options for a server in a "peers" section.
<param*> is a list of parameters for this server. The "default-server" keyword accepts an important number of options and has a complete section dedicated to it. In a peers section, the transport parameters of a "default-server" line are supported. Please refer to section 5 for more details, and the "server" keyword below in this section for some of the restrictions.
This re-enables a peers section which was previously disabled via the
"disabled" keyword.
Defines a peer inside a peers section. If <peername> is set to the local peer name (by default hostname, or forced using "-L" command line option), haproxy will listen for incoming remote peer connection on the provided address. Otherwise, the address defines where to connect to to join the remote peer, and <peername> is used at the protocol level to identify and validate the remote peer on the server side. During a soft restart, local peer address is used by the old instance to connect the new one and initiate a complete replication (teaching process). It is strongly recommended to have the exact same peers declaration on all peers and to only rely on the "-L" command line argument to change the local peer name. This makes it easier to maintain coherent configuration files across all peers. You may want to reference some environment variables in the address parameter, see section 2.3 about environment variables. Note: "peer" keyword may transparently be replaced by "server" keyword (see "server" keyword explanation below).
As previously mentioned, "peer" keyword may be replaced by "server" keyword with a support for all "server" parameters found in 5.2 paragraph that are related to transport settings. If the underlying peer is local, the address parameter must not be present; it must be provided on a "bind" line (see "bind" keyword of this "peers" section). A number of "server" parameters are irrelevant for "peers" sections. Peers by nature do not support dynamic host name resolution nor health checks, hence parameters like "init_addr", "resolvers", "check", "agent-check", or "track" are not supported. Similarly, there is no load balancing nor stickiness, thus parameters such as "weight" or "cookie" have no effect.
# The old way.
peers mypeers
peer haproxy1 192.168.0.1:1024
peer haproxy2 192.168.0.2:1024
peer haproxy3 10.2.0.1:1024
backend mybackend
mode tcp
balance roundrobin
stick-table type ip size 20k peers mypeers
stick on src
server srv1 192.168.0.30:80
server srv2 192.168.0.31:80
Example:
peers mypeers
bind 192.168.0.1:1024 ssl crt mycerts/pem
default-server ssl verify none
server haproxy1 #local peer
server haproxy2 192.168.0.2:1024
server haproxy3 10.2.0.1:1024
Configure a stickiness table for the current section. This line is parsed exactly the same way as the "stick-table" keyword in others section, except for the "peers" argument which is not required here and with an additional mandatory first parameter to designate the stick-table. Contrary to others sections, there may be several "table" lines in "peers" sections (see also "stick-table" keyword). Also be aware of the fact that "peers" sections have their own stick-table namespaces to avoid collisions between stick-table names identical in different "peers" section. This is internally handled prepending the "peers" sections names to the name of the stick-tables followed by a '/' character. If somewhere else in the configuration file you have to refer to such stick-tables declared in "peers" sections you must use the prefixed version of the stick-table name as follows: peers mypeers peer A ... peer B ... table t1 ... frontend fe1 tcp-request content track-sc0 src table mypeers/t1 This is also this prefixed version of the stick-table names which must be used to refer to stick-tables through the CLI. About "peers" protocol, as only "peers" belonging to the same section may communicate with each others, there is no need to do such a distinction. Several "peers" sections may declare stick-tables with the same name. This is shorter version of the stick-table name which is sent over the network. There is only a '/' character as prefix to avoid stick-table name collisions between stick-tables declared as backends and stick-table declared in "peers" sections as follows in this weird but supported configuration: peers mypeers peer A ... peer B ... table t1 type string size 10m store gpc0 backend t1 stick-table type string size 10m store gpc0 peers mypeers Here "t1" table declared in "mypeeers" section has "mypeers/t1" as global name. "t1" table declared as a backend as "t1" as global name. But at peer protocol level the former table is named "/t1", the latter is again named "t1".
It is possible to send email alerts when the state of servers changes. If configured email alerts are sent to each mailer that is configured in a mailers section. Email is sent to mailers using SMTP.
Creates a new mailer list with the name <mailersect>. It is an independent section which is referenced by one or more proxies.
Defines a mailer inside a mailers section.
mailers mymailers
mailer smtp1 192.168.0.1:587
mailer smtp2 192.168.0.2:587
backend mybackend
mode tcp
balance roundrobin
email-alert mailers mymailers
email-alert from test1@horms.org
email-alert to test2@horms.org
server srv1 192.168.0.30:80
server srv2 192.168.0.31:80
Defines the time available for a mail/connection to be made and send to the mail-server. If not defined the default value is 10 seconds. To allow for at least two SYN-ACK packets to be send during initial TCP handshake it is advised to keep this value above 4 seconds.
mailers mymailers
timeout mail 20s
mailer smtp1 192.168.0.1:587
In master-worker mode, it is possible to launch external binaries with the master, these processes are called programs. These programs are launched and managed the same way as the workers. During a reload of HAProxy, those processes are dealing with the same sequence as a worker: - the master is re-executed - the master sends a SIGUSR1 signal to the program - if "option start-on-reload" is not disabled, the master launches a new instance of the program During a stop, or restart, a SIGTERM is sent to the programs.
This is a new program section, this section will create an instance <name> which is visible in "show proc" on the master CLI. (See "9.4. Master CLI" in the management guide).
Define the command to start with optional arguments. The command is looked up in the current PATH if it does not include an absolute path. This is a mandatory option of the program section. Arguments containing spaces must be enclosed in quotes or double quotes or be prefixed by a backslash.
Start (or not) a new instance of the program upon a reload of the master. The default is to start a new instance. This option may only be used in a program section.
Proxy configuration can be located in a set of sections : - defaults [<name>] - frontend <name> - backend <name> - listen <name> A "defaults" section sets default parameters for all other sections following its declaration. Those default parameters are reset by the next "defaults" section. See below for the list of parameters which can be set in a "defaults" section. The name is optional but its use is encouraged for better readability. A "frontend" section describes a set of listening sockets accepting client connections. A "backend" section describes a set of servers to which the proxy will connect to forward incoming connections. A "listen" section defines a complete proxy with its frontend and backend parts combined in one section. It is generally useful for TCP-only traffic. All proxy names must be formed from upper and lower case letters, digits, '-' (dash), '_' (underscore) , '.' (dot) and ':' (colon). ACL names are case-sensitive, which means that "www" and "WWW" are two different proxies. Historically, all proxy names could overlap, it just caused troubles in the logs. Since the introduction of content switching, it is mandatory that two proxies with overlapping capabilities (frontend/backend) have different names. However, it is still permitted that a frontend and a backend share the same name, as this configuration seems to be commonly encountered. Right now, two major proxy modes are supported : "tcp", also known as layer 4, and "http", also known as layer 7. In layer 4 mode, HAProxy simply forwards bidirectional traffic between two sides. In layer 7 mode, HAProxy analyzes the protocol, and can interact with it by allowing, blocking, switching, adding, modifying, or removing arbitrary contents in requests or responses, based on arbitrary criteria. In HTTP mode, the processing applied to requests and responses flowing over a connection depends in the combination of the frontend's HTTP options and the backend's. HAProxy supports 3 connection modes : - KAL : keep alive ("option http-keep-alive") which is the default mode : all requests and responses are processed, and connections remain open but idle between responses and new requests. - TUN: tunnel ("option http-tunnel") : this was the default mode for versions 1.0 to 1.5-dev21 : only the first request and response are processed, and everything else is forwarded with no analysis at all. This mode should not be used as it creates lots of trouble with logging and HTTP processing. And because it cannot work in HTTP/2, this option is deprecated and it is only supported on legacy HTTP frontends. In HTX, it is ignored and a warning is emitted during HAProxy startup. - SCL: server close ("option http-server-close") : the server-facing connection is closed after the end of the response is received, but the client-facing connection remains open. - CLO: close ("option httpclose"): the connection is closed after the end of the response and "Connection: close" appended in both directions. The effective mode that will be applied to a connection passing through a frontend and a backend can be determined by both proxy modes according to the following matrix, but in short, the modes are symmetric, keep-alive is the weakest option and close is the strongest. Backend mode | KAL | SCL | CLO ----+-----+-----+---- KAL | KAL | SCL | CLO ----+-----+-----+---- TUN | TUN | SCL | CLO Frontend ----+-----+-----+---- mode SCL | SCL | SCL | CLO ----+-----+-----+---- CLO | CLO | CLO | CLO
The following list of keywords is supported. Most of them may only be used in a limited set of section types. Some of them are marked as "deprecated" because they are inherited from an old syntax which may be confusing or functionally limited, and there are new recommended keywords to replace them. Keywords marked with "(*)" can be optionally inverted using the "no" prefix, e.g. "no option contstats". This makes sense when the option has been enabled by default and must be disabled for a specific instance. Such options may also be prefixed with "default" in order to restore default settings regardless of what has been specified in a previous "defaults" section.
This section provides a description of each keyword and its usage.
Declare or complete an access list.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
acl invalid_src src 0.0.0.0/7 224.0.0.0/3
acl invalid_src src_port 0:1023
acl local_dst hdr(host) -i localhost
See section 7 about ACL usage.
Give hints to the system about the approximate listen backlog desired size
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
<conns> is the number of pending connections. Depending on the operating system, it may represent the number of already acknowledged connections, of non-acknowledged ones, or both.
In order to protect against SYN flood attacks, one solution is to increase the system's SYN backlog size. Depending on the system, sometimes it is just tunable via a system parameter, sometimes it is not adjustable at all, and sometimes the system relies on hints given by the application at the time of the listen() syscall. By default, HAProxy passes the frontend's maxconn value to the listen() syscall. On systems which can make use of this value, it can sometimes be useful to be able to specify a different value, hence this backlog parameter. On Linux 2.4, the parameter is ignored by the system. On Linux 2.6, it is used as a hint and the system accepts up to the smallest greater power of two, and never more than some limits (usually 32768).
Define the load balancing algorithm to be used in a backend.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<algorithm> is the algorithm used to select a server when doing load balancing. This only applies when no persistence information is available, or when a connection is redispatched to another server. <algorithm> may be one of the following : roundrobin Each server is used in turns, according to their weights. This is the smoothest and fairest algorithm when the server's processing time remains equally distributed. This algorithm is dynamic, which means that server weights may be adjusted on the fly for slow starts for instance. It is limited by design to 4095 active servers per backend. Note that in some large farms, when a server becomes up after having been down for a very short time, it may sometimes take a few hundreds requests for it to be re-integrated into the farm and start receiving traffic. This is normal, though very rare. It is indicated here in case you would have the chance to observe it, so that you don't worry. static-rr Each server is used in turns, according to their weights. This algorithm is as similar to roundrobin except that it is static, which means that changing a server's weight on the fly will have no effect. On the other hand, it has no design limitation on the number of servers, and when a server goes up, it is always immediately reintroduced into the farm, once the full map is recomputed. It also uses slightly less CPU to run (around -1%). leastconn The server with the lowest number of connections receives the connection. Round-robin is performed within groups of servers of the same load to ensure that all servers will be used. Use of this algorithm is recommended where very long sessions are expected, such as LDAP, SQL, TSE, etc... but is not very well suited for protocols using short sessions such as HTTP. This algorithm is dynamic, which means that server weights may be adjusted on the fly for slow starts for instance. first The first server with available connection slots receives the connection. The servers are chosen from the lowest numeric identifier to the highest (see server parameter "id"), which defaults to the server's position in the farm. Once a server reaches its maxconn value, the next server is used. It does not make sense to use this algorithm without setting maxconn. The purpose of this algorithm is to always use the smallest number of servers so that extra servers can be powered off during non-intensive hours. This algorithm ignores the server weight, and brings more benefit to long session such as RDP or IMAP than HTTP, though it can be useful there too. In order to use this algorithm efficiently, it is recommended that a cloud controller regularly checks server usage to turn them off when unused, and regularly checks backend queue to turn new servers on when the queue inflates. Alternatively, using "http-check send-state" may inform servers on the load. source The source IP address is hashed and divided by the total weight of the running servers to designate which server will receive the request. This ensures that the same client IP address will always reach the same server as long as no server goes down or up. If the hash result changes due to the number of running servers changing, many clients will be directed to a different server. This algorithm is generally used in TCP mode where no cookie may be inserted. It may also be used on the Internet to provide a best-effort stickiness to clients which refuse session cookies. This algorithm is static by default, which means that changing a server's weight on the fly will have no effect, but this can be changed using "hash-type". uri This algorithm hashes either the left part of the URI (before the question mark) or the whole URI (if the "whole" parameter is present) and divides the hash value by the total weight of the running servers. The result designates which server will receive the request. This ensures that the same URI will always be directed to the same server as long as no server goes up or down. This is used with proxy caches and anti-virus proxies in order to maximize the cache hit rate. Note that this algorithm may only be used in an HTTP backend. This algorithm is static by default, which means that changing a server's weight on the fly will have no effect, but this can be changed using "hash-type". This algorithm supports two optional parameters "len" and "depth", both followed by a positive integer number. These options may be helpful when it is needed to balance servers based on the beginning of the URI only. The "len" parameter indicates that the algorithm should only consider that many characters at the beginning of the URI to compute the hash. Note that having "len" set to 1 rarely makes sense since most URIs start with a leading "/". The "depth" parameter indicates the maximum directory depth to be used to compute the hash. One level is counted for each slash in the request. If both parameters are specified, the evaluation stops when either is reached. url_param The URL parameter specified in argument will be looked up in the query string of each HTTP GET request. If the modifier "check_post" is used, then an HTTP POST request entity will be searched for the parameter argument, when it is not found in a query string after a question mark ('?') in the URL. The message body will only start to be analyzed once either the advertised amount of data has been received or the request buffer is full. In the unlikely event that chunked encoding is used, only the first chunk is scanned. Parameter values separated by a chunk boundary, may be randomly balanced if at all. This keyword used to support an optional <max_wait> parameter which is now ignored. If the parameter is found followed by an equal sign ('=') and a value, then the value is hashed and divided by the total weight of the running servers. The result designates which server will receive the request. This is used to track user identifiers in requests and ensure that a same user ID will always be sent to the same server as long as no server goes up or down. If no value is found or if the parameter is not found, then a round robin algorithm is applied. Note that this algorithm may only be used in an HTTP backend. This algorithm is static by default, which means that changing a server's weight on the fly will have no effect, but this can be changed using "hash-type". hdr(<name>) The HTTP header <name> will be looked up in each HTTP request. Just as with the equivalent ACL 'hdr()' function, the header name in parenthesis is not case sensitive. If the header is absent or if it does not contain any value, the roundrobin algorithm is applied instead. An optional 'use_domain_only' parameter is available, for reducing the hash algorithm to the main domain part with some specific headers such as 'Host'. For instance, in the Host value "haproxy.1wt.eu", only "1wt" will be considered. This algorithm is static by default, which means that changing a server's weight on the fly will have no effect, but this can be changed using "hash-type". random random(<draws>) A random number will be used as the key for the consistent hashing function. This means that the servers' weights are respected, dynamic weight changes immediately take effect, as well as new server additions. Random load balancing can be useful with large farms or when servers are frequently added or removed as it may avoid the hammering effect that could result from roundrobin or leastconn in this situation. The hash-balance-factor directive can be used to further improve fairness of the load balancing, especially in situations where servers show highly variable response times. When an argument <draws> is present, it must be an integer value one or greater, indicating the number of draws before selecting the least loaded of these servers. It was indeed demonstrated that picking the least loaded of two servers is enough to significantly improve the fairness of the algorithm, by always avoiding to pick the most loaded server within a farm and getting rid of any bias that could be induced by the unfair distribution of the consistent list. Higher values N will take away N-1 of the highest loaded servers at the expense of performance. With very high values, the algorithm will converge towards the leastconn's result but much slower. The default value is 2, which generally shows very good distribution and performance. This algorithm is also known as the Power of Two Random Choices and is described here : http://www.eecs.harvard.edu/~michaelm/postscripts/handbook2001.pdf rdp-cookie rdp-cookie(<name>) The RDP cookie <name> (or "mstshash" if omitted) will be looked up and hashed for each incoming TCP request. Just as with the equivalent ACL 'req.rdp_cookie()' function, the name is not case-sensitive. This mechanism is useful as a degraded persistence mode, as it makes it possible to always send the same user (or the same session ID) to the same server. If the cookie is not found, the normal roundrobin algorithm is used instead. Note that for this to work, the frontend must ensure that an RDP cookie is already present in the request buffer. For this you must use 'tcp-request content accept' rule combined with a 'req.rdp_cookie_cnt' ACL. This algorithm is static by default, which means that changing a server's weight on the fly will have no effect, but this can be changed using "hash-type". <arguments> is an optional list of arguments which may be needed by some algorithms. Right now, only "url_param" and "uri" support an optional argument.
The load balancing algorithm of a backend is set to roundrobin when no other algorithm, mode nor option have been set. The algorithm may only be set once for each backend. With authentication schemes that require the same connection like NTLM, URI based algorithms must not be used, as they would cause subsequent requests to be routed to different backend servers, breaking the invalid assumptions NTLM relies on.
balance roundrobin
balance url_param userid
balance url_param session_id check_post 64
balance hdr(User-Agent)
balance hdr(host)
balance hdr(Host) use_domain_only
Note: the following caveats and limitations on using the "check_post" extension with "url_param" must be considered : - all POST requests are eligible for consideration, because there is no way to determine if the parameters will be found in the body or entity which may contain binary data. Therefore another method may be required to restrict consideration of POST requests that have no URL parameters in the body. (see acl reqideny http_end) - using a <max_wait> value larger than the request buffer size does not make sense and is useless. The buffer size is set at build time, and defaults to 16 kB. - Content-Encoding is not supported, the parameter search will probably fail; and load balancing will fall back to Round Robin. - Expect: 100-continue is not supported, load balancing will fall back to Round Robin. - Transfer-Encoding (RFC7230 3.3.1) is only supported in the first chunk. If the entire parameter value is not present in the first chunk, the selection of server is undefined (actually, defined by how little actually appeared in the first chunk). - This feature does not support generation of a 100, 411 or 501 response. - In some cases, requesting "check_post" MAY attempt to scan the entire contents of a message body. Scanning normally terminates when linear white space or control characters are found, indicating the end of what might be a URL parameter list. This is probably not a concern with SGML type message bodies.
Define one or several listening addresses and/or ports in a frontend.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | no |
<address> is optional and can be a host name, an IPv4 address, an IPv6 address, or '*'. It designates the address the frontend will listen on. If unset, all IPv4 addresses of the system will be listened on. The same will apply for '*' or the system's special address "0.0.0.0". The IPv6 equivalent is '::'. Optionally, an address family prefix may be used before the address to force the family regardless of the address format, which can be useful to specify a path to a unix socket with no slash ('/'). Currently supported prefixes are : - 'ipv4@' -> address is always IPv4 - 'ipv6@' -> address is always IPv6 - 'unix@' -> address is a path to a local unix socket - 'abns@' -> address is in abstract namespace (Linux only). Note: since abstract sockets are not "rebindable", they do not cope well with multi-process mode during soft-restart, so it is better to avoid them if nbproc is greater than 1. The effect is that if the new process fails to start, only one of the old ones will be able to rebind to the socket. - 'fd@<n>' -> use file descriptor <n> inherited from the parent. The fd must be bound and may or may not already be listening. - 'sockpair@<n>'-> like fd@ but you must use the fd of a connected unix socket or of a socketpair. The bind waits to receive a FD over the unix socket and uses it as if it was the FD of an accept(). Should be used carefully. You may want to reference some environment variables in the address parameter, see section 2.3 about environment variables. <port_range> is either a unique TCP port, or a port range for which the proxy will accept connections for the IP address specified above. The port is mandatory for TCP listeners. Note that in the case of an IPv6 address, the port is always the number after the last colon (':'). A range can either be : - a numerical port (ex: '80') - a dash-delimited ports range explicitly stating the lower and upper bounds (ex: '2000-2100') which are included in the range. Particular care must be taken against port ranges, because every <address:port> couple consumes one socket (= a file descriptor), so it's easy to consume lots of descriptors with a simple range, and to run out of sockets. Also, each <address:port> couple must be used only once among all instances running on a same system. Please note that binding to ports lower than 1024 generally require particular privileges to start the program, which are independent of the 'uid' parameter. <path> is a UNIX socket path beginning with a slash ('/'). This is alternative to the TCP listening port. HAProxy will then receive UNIX connections on the socket located at this place. The path must begin with a slash and by default is absolute. It can be relative to the prefix defined by "unix-bind" in the global section. Note that the total length of the prefix followed by the socket path cannot exceed some system limits for UNIX sockets, which commonly are set to 107 characters. <param*> is a list of parameters common to all sockets declared on the same line. These numerous parameters depend on OS and build options and have a complete section dedicated to them. Please refer to section 5 to for more details.
It is possible to specify a list of address:port combinations delimited by
commas. The frontend will then listen on all of these addresses. There is no
fixed limit to the number of addresses and ports which can be listened on in
a frontend, as well as there is no limit to the number of "bind" statements
in a frontend.
listen http_proxy
bind :80,:443
bind 10.0.0.1:10080,10.0.0.1:10443
bind /var/run/ssl-frontend.sock user root mode 600 accept-proxy
listen http_https_proxy
bind :80
bind :443 ssl crt /etc/haproxy/site.pem
listen http_https_proxy_explicit
bind ipv6@:80
bind ipv4@public_ssl:443 ssl crt /etc/haproxy/site.pem
bind unix@ssl-frontend.sock user root mode 600 accept-proxy
listen external_bind_app1
bind "fd@${FD_APP1}"
Note: regarding Linux's abstract namespace sockets, HAProxy uses the whole sun_path length is used for the address length. Some other programs such as socat use the string length only by default. Pass the option ",unix-tightsocklen=0" to any abstract socket definition in socat to make it compatible with HAProxy's.
Limit visibility of an instance to a certain set of processes numbers.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
all All process will see this instance. This is the default. It may be used to override a default value. odd This instance will be enabled on processes 1,3,5,...63. This option may be combined with other numbers. even This instance will be enabled on processes 2,4,6,...64. This option may be combined with other numbers. Do not use it with less than 2 processes otherwise some instances might be missing from all processes. process_num The instance will be enabled on this process number or range, whose values must all be between 1 and 32 or 64 depending on the machine's word size. Ranges can be partially defined. The higher bound can be omitted. In such case, it is replaced by the corresponding maximum value. If a proxy is bound to process numbers greater than the configured global.nbproc, it will either be forced to process #1 if a single process was specified, or to all processes otherwise.
This keyword limits binding of certain instances to certain processes. This is useful in order not to have too many processes listening to the same ports. For instance, on a dual-core machine, it might make sense to set 'nbproc 2' in the global section, then distributes the listeners among 'odd' and 'even' instances. At the moment, it is not possible to reference more than 32 or 64 processes using this keyword, but this should be more than enough for most setups. Please note that 'all' really means all processes regardless of the machine's word size, and is not limited to the first 32 or 64. Each "bind" line may further be limited to a subset of the proxy's processes, please consult the "process" bind keyword in section 5.1. When a frontend has no explicit "bind-process" line, it tries to bind to all the processes referenced by its "bind" lines. That means that frontends can easily adapt to their listeners' processes. If some backends are referenced by frontends bound to other processes, the backend automatically inherits the frontend's processes.
listen app_ip1
bind 10.0.0.1:80
bind-process odd
listen app_ip2
bind 10.0.0.2:80
bind-process even
listen management
bind 10.0.0.3:80
bind-process 1 2 3 4
listen management
bind 10.0.0.4:80
bind-process 1-4
Block a layer 7 request if/unless a condition is matched
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
The HTTP request will be blocked very early in the layer 7 processing if/unless <condition> is matched. A 403 error will be returned if the request is blocked. The condition has to reference ACLs (see section 7). This is typically used to deny access to certain sensitive resources if some conditions are met or not met. There is no fixed limit to the number of "block" statements per instance. To block connections at layer 4 (without sending a 403 error) see "tcp-request connection reject" and "tcp-request content reject" rules. This form is deprecated, do not use it in any new configuration, use the new "http-request deny" instead.
acl invalid_src src 0.0.0.0/7 224.0.0.0/3
acl invalid_src src_port 0:1023
acl local_dst hdr(host) -i localhost
# block is deprecated. Use http-request deny instead:
#block if invalid_src || local_dst
http-request deny if invalid_src || local_dst
Capture and log a cookie in the request and in the response.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | no |
<name> is the beginning of the name of the cookie to capture. In order to match the exact name, simply suffix the name with an equal sign ('='). The full name will appear in the logs, which is useful with application servers which adjust both the cookie name and value (e.g. ASPSESSIONXXX). <length> is the maximum number of characters to report in the logs, which include the cookie name, the equal sign and the value, all in the standard "name=value" form. The string will be truncated on the right if it exceeds <length>.
Only the first cookie is captured. Both the "cookie" request headers and the "set-cookie" response headers are monitored. This is particularly useful to check for application bugs causing session crossing or stealing between users, because generally the user's cookies can only change on a login page. When the cookie was not presented by the client, the associated log column will report "-". When a request does not cause a cookie to be assigned by the server, a "-" is reported in the response column. The capture is performed in the frontend only because it is necessary that the log format does not change for a given frontend depending on the backends. This may change in the future. Note that there can be only one "capture cookie" statement in a frontend. The maximum capture length is set by the global "tune.http.cookielen" setting and defaults to 63 characters. It is not possible to specify a capture in a "defaults" section.
capture cookie ASPSESSION len 32
Capture and log the last occurrence of the specified request header.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | no |
<name> is the name of the header to capture. The header names are not case-sensitive, but it is a common practice to write them as they appear in the requests, with the first letter of each word in upper case. The header name will not appear in the logs, only the value is reported, but the position in the logs is respected. <length> is the maximum number of characters to extract from the value and report in the logs. The string will be truncated on the right if it exceeds <length>.
The complete value of the last occurrence of the header is captured. The value will be added to the logs between braces ('{}'). If multiple headers are captured, they will be delimited by a vertical bar ('|') and will appear in the same order they were declared in the configuration. Non-existent headers will be logged just as an empty string. Common uses for request header captures include the "Host" field in virtual hosting environments, the "Content-length" when uploads are supported, "User-agent" to quickly differentiate between real users and robots, and "X-Forwarded-For" in proxied environments to find where the request came from. Note that when capturing headers such as "User-agent", some spaces may be logged, making the log analysis more difficult. Thus be careful about what you log if you know your log parser is not smart enough to rely on the braces. There is no limit to the number of captured request headers nor to their length, though it is wise to keep them low to limit memory usage per session. In order to keep log format consistent for a same frontend, header captures can only be declared in a frontend. It is not possible to specify a capture in a "defaults" section.
capture request header Host len 15
capture request header X-Forwarded-For len 15
capture request header Referer len 15
Capture and log the last occurrence of the specified response header.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | no |
<name> is the name of the header to capture. The header names are not case-sensitive, but it is a common practice to write them as they appear in the response, with the first letter of each word in upper case. The header name will not appear in the logs, only the value is reported, but the position in the logs is respected. <length> is the maximum number of characters to extract from the value and report in the logs. The string will be truncated on the right if it exceeds <length>.
The complete value of the last occurrence of the header is captured. The result will be added to the logs between braces ('{}') after the captured request headers. If multiple headers are captured, they will be delimited by a vertical bar ('|') and will appear in the same order they were declared in the configuration. Non-existent headers will be logged just as an empty string. Common uses for response header captures include the "Content-length" header which indicates how many bytes are expected to be returned, the "Location" header to track redirections. There is no limit to the number of captured response headers nor to their length, though it is wise to keep them low to limit memory usage per session. In order to keep log format consistent for a same frontend, header captures can only be declared in a frontend. It is not possible to specify a capture in a "defaults" section.
capture response header Content-length len 9
capture response header Location len 15
Set the maximum inactivity time on the client side.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
<timeout> is the timeout value is specified in milliseconds by default, but can be in any other unit if the number is suffixed by the unit, as explained at the top of this document.
The inactivity timeout applies when the client is expected to acknowledge or send data. In HTTP mode, this timeout is particularly important to consider during the first phase, when the client sends the request, and during the response while it is reading data sent by the server. The value is specified in milliseconds by default, but can be in any other unit if the number is suffixed by the unit, as specified at the top of this document. In TCP mode (and to a lesser extent, in HTTP mode), it is highly recommended that the client timeout remains equal to the server timeout in order to avoid complex situations to debug. It is a good practice to cover one or several TCP packet losses by specifying timeouts that are slightly above multiples of 3 seconds (e.g. 4 or 5 seconds). This parameter is specific to frontends, but can be specified once for all in "defaults" sections. This is in fact one of the easiest solutions not to forget about it. An unspecified timeout results in an infinite timeout, which is not recommended. Such a usage is accepted and works but reports a warning during startup because it may results in accumulation of expired sessions in the system if the system's timeouts are not configured either. This parameter is provided for compatibility but is currently deprecated. Please use "timeout client" instead.
Enable HTTP compression.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
algo is followed by the list of supported compression algorithms. type is followed by the list of MIME types that will be compressed. offload makes haproxy work as a compression offloader only (see notes).
The currently supported algorithms are : identity this is mostly for debugging, and it was useful for developing the compression feature. Identity does not apply any change on data. gzip applies gzip compression. This setting is only available when support for zlib or libslz was built in. deflate same as "gzip", but with deflate algorithm and zlib format. Note that this algorithm has ambiguous support on many browsers and no support at all from recent ones. It is strongly recommended not to use it for anything else than experimentation. This setting is only available when support for zlib or libslz was built in. raw-deflate same as "deflate" without the zlib wrapper, and used as an alternative when the browser wants "deflate". All major browsers understand it and despite violating the standards, it is known to work better than "deflate", at least on MSIE and some versions of Safari. Do not use it in conjunction with "deflate", use either one or the other since both react to the same Accept-Encoding token. This setting is only available when support for zlib or libslz was built in. Compression will be activated depending on the Accept-Encoding request header. With identity, it does not take care of that header. If backend servers support HTTP compression, these directives will be no-op: haproxy will see the compressed response and will not compress again. If backend servers do not support HTTP compression and there is Accept-Encoding header in request, haproxy will compress the matching response. The "offload" setting makes haproxy remove the Accept-Encoding header to prevent backend servers from compressing responses. It is strongly recommended not to do this because this means that all the compression work will be done on the single point where haproxy is located. However in some deployment scenarios, haproxy may be installed in front of a buggy gateway with broken HTTP compression implementation which can't be turned off. In that case haproxy can be used to prevent that gateway from emitting invalid payloads. In this case, simply removing the header in the configuration does not work because it applies before the header is parsed, so that prevents haproxy from compressing. The "offload" setting should then be used for such scenarios. Note: for now, the "offload" setting is ignored when set in a defaults section. Compression is disabled when: * the request does not advertise a supported compression algorithm in the "Accept-Encoding" header * the response message is not HTTP/1.1 or above * HTTP status code is not one of 200, 201, 202, or 203 * response contain neither a "Content-Length" header nor a "Transfer-Encoding" whose last value is "chunked" * response contains a "Content-Type" header whose first value starts with "multipart" * the response contains the "no-transform" value in the "Cache-control" header * User-Agent matches "Mozilla/4" unless it is MSIE 6 with XP SP2, or MSIE 7 and later * The response contains a "Content-Encoding" header, indicating that the response is already compressed (see compression offload) * The response contains an invalid "ETag" header or multiple ETag headers Note: The compression does not emit the Warning header.
compression algo gzip
compression type text/html text/plain
Set the maximum time to wait for a connection attempt to a server to succeed.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<timeout> is the timeout value is specified in milliseconds by default, but can be in any other unit if the number is suffixed by the unit, as explained at the top of this document.
If the server is located on the same LAN as haproxy, the connection should be immediate (less than a few milliseconds). Anyway, it is a good practice to cover one or several TCP packet losses by specifying timeouts that are slightly above multiples of 3 seconds (e.g. 4 or 5 seconds). By default, the connect timeout also presets the queue timeout to the same value if this one has not been specified. Historically, the contimeout was also used to set the tarpit timeout in a listen section, which is not possible in a pure frontend. This parameter is specific to backends, but can be specified once for all in "defaults" sections. This is in fact one of the easiest solutions not to forget about it. An unspecified timeout results in an infinite timeout, which is not recommended. Such a usage is accepted and works but reports a warning during startup because it may results in accumulation of failed sessions in the system if the system's timeouts are not configured either. This parameter is provided for backwards compatibility but is currently deprecated. Please use "timeout connect", "timeout queue" or "timeout tarpit" instead.
Enable cookie-based persistence in a backend.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<name> is the name of the cookie which will be monitored, modified or inserted in order to bring persistence. This cookie is sent to the client via a "Set-Cookie" header in the response, and is brought back by the client in a "Cookie" header in all requests. Special care should be taken to choose a name which does not conflict with any likely application cookie. Also, if the same backends are subject to be used by the same clients (e.g. HTTP/HTTPS), care should be taken to use different cookie names between all backends if persistence between them is not desired. rewrite This keyword indicates that the cookie will be provided by the server and that haproxy will have to modify its value to set the server's identifier in it. This mode is handy when the management of complex combinations of "Set-cookie" and "Cache-control" headers is left to the application. The application can then decide whether or not it is appropriate to emit a persistence cookie. Since all responses should be monitored, this mode doesn't work in HTTP tunnel mode. Unless the application behavior is very complex and/or broken, it is advised not to start with this mode for new deployments. This keyword is incompatible with "insert" and "prefix". insert This keyword indicates that the persistence cookie will have to be inserted by haproxy in server responses if the client did not already have a cookie that would have permitted it to access this server. When used without the "preserve" option, if the server emits a cookie with the same name, it will be removed before processing. For this reason, this mode can be used to upgrade existing configurations running in the "rewrite" mode. The cookie will only be a session cookie and will not be stored on the client's disk. By default, unless the "indirect" option is added, the server will see the cookies emitted by the client. Due to caching effects, it is generally wise to add the "nocache" or "postonly" keywords (see below). The "insert" keyword is not compatible with "rewrite" and "prefix". prefix This keyword indicates that instead of relying on a dedicated cookie for the persistence, an existing one will be completed. This may be needed in some specific environments where the client does not support more than one single cookie and the application already needs it. In this case, whenever the server sets a cookie named <name>, it will be prefixed with the server's identifier and a delimiter. The prefix will be removed from all client requests so that the server still finds the cookie it emitted. Since all requests and responses are subject to being modified, this mode doesn't work with tunnel mode. The "prefix" keyword is not compatible with "rewrite" and "insert". Note: it is highly recommended not to use "indirect" with "prefix", otherwise server cookie updates would not be sent to clients. indirect When this option is specified, no cookie will be emitted to a client which already has a valid one for the server which has processed the request. If the server sets such a cookie itself, it will be removed, unless the "preserve" option is also set. In "insert" mode, this will additionally remove cookies from the requests transmitted to the server, making the persistence mechanism totally transparent from an application point of view. Note: it is highly recommended not to use "indirect" with "prefix", otherwise server cookie updates would not be sent to clients. nocache This option is recommended in conjunction with the insert mode when there is a cache between the client and HAProxy, as it ensures that a cacheable response will be tagged non-cacheable if a cookie needs to be inserted. This is important because if all persistence cookies are added on a cacheable home page for instance, then all customers will then fetch the page from an outer cache and will all share the same persistence cookie, leading to one server receiving much more traffic than others. See also the "insert" and "postonly" options. postonly This option ensures that cookie insertion will only be performed on responses to POST requests. It is an alternative to the "nocache" option, because POST responses are not cacheable, so this ensures that the persistence cookie will never get cached. Since most sites do not need any sort of persistence before the first POST which generally is a login request, this is a very efficient method to optimize caching without risking to find a persistence cookie in the cache. See also the "insert" and "nocache" options. preserve This option may only be used with "insert" and/or "indirect". It allows the server to emit the persistence cookie itself. In this case, if a cookie is found in the response, haproxy will leave it untouched. This is useful in order to end persistence after a logout request for instance. For this, the server just has to emit a cookie with an invalid value (e.g. empty) or with a date in the past. By combining this mechanism with the "disable-on-404" check option, it is possible to perform a completely graceful shutdown because users will definitely leave the server after they logout. httponly This option tells haproxy to add an "HttpOnly" cookie attribute when a cookie is inserted. This attribute is used so that a user agent doesn't share the cookie with non-HTTP components. Please check RFC6265 for more information on this attribute. secure This option tells haproxy to add a "Secure" cookie attribute when a cookie is inserted. This attribute is used so that a user agent never emits this cookie over non-secure channels, which means that a cookie learned with this flag will be presented only over SSL/TLS connections. Please check RFC6265 for more information on this attribute. domain This option allows to specify the domain at which a cookie is inserted. It requires exactly one parameter: a valid domain name. If the domain begins with a dot, the browser is allowed to use it for any host ending with that name. It is also possible to specify several domain names by invoking this option multiple times. Some browsers might have small limits on the number of domains, so be careful when doing that. For the record, sending 10 domains to MSIE 6 or Firefox 2 works as expected. maxidle This option allows inserted cookies to be ignored after some idle time. It only works with insert-mode cookies. When a cookie is sent to the client, the date this cookie was emitted is sent too. Upon further presentations of this cookie, if the date is older than the delay indicated by the parameter (in seconds), it will be ignored. Otherwise, it will be refreshed if needed when the response is sent to the client. This is particularly useful to prevent users who never close their browsers from remaining for too long on the same server (e.g. after a farm size change). When this option is set and a cookie has no date, it is always accepted, but gets refreshed in the response. This maintains the ability for admins to access their sites. Cookies that have a date in the future further than 24 hours are ignored. Doing so lets admins fix timezone issues without risking kicking users off the site. maxlife This option allows inserted cookies to be ignored after some life time, whether they're in use or not. It only works with insert mode cookies. When a cookie is first sent to the client, the date this cookie was emitted is sent too. Upon further presentations of this cookie, if the date is older than the delay indicated by the parameter (in seconds), it will be ignored. If the cookie in the request has no date, it is accepted and a date will be set. Cookies that have a date in the future further than 24 hours are ignored. Doing so lets admins fix timezone issues without risking kicking users off the site. Contrary to maxidle, this value is not refreshed, only the first visit date counts. Both maxidle and maxlife may be used at the time. This is particularly useful to prevent users who never close their browsers from remaining for too long on the same server (e.g. after a farm size change). This is stronger than the maxidle method in that it forces a redispatch after some absolute delay. dynamic Activate dynamic cookies. When used, a session cookie is dynamically created for each server, based on the IP and port of the server, and a secret key, specified in the "dynamic-cookie-key" backend directive. The cookie will be regenerated each time the IP address change, and is only generated for IPv4/IPv6. attr This option tells haproxy to add an extra attribute when a cookie is inserted. The attribute value can contain any characters except control ones or ";". This option may be repeated.
There can be only one persistence cookie per HTTP backend, and it can be declared in a defaults section. The value of the cookie will be the value indicated after the "cookie" keyword in a "server" statement. If no cookie is declared for a given server, the cookie is not set.
cookie JSESSIONID prefix
cookie SRV insert indirect nocache
cookie SRV insert postonly indirect
cookie SRV insert indirect nocache maxidle 30m maxlife 8h
Declares a capture slot.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | no |
<length> is the length allowed for the capture.
This declaration is only available in the frontend or listen section, but the reserved slot can be used in the backends. The "request" keyword allocates a capture slot for use in the request, and "response" allocates a capture slot for use in the response.
Change default options for a server in a backend
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<param*> is a list of parameters for this server. The "default-server" keyword accepts an important number of options and has a complete section dedicated to it. Please refer to section 5 for more details.
default-server inter 1000 weight 13
Specify the backend to use when no "use_backend" rule has been matched.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
<backend> is the name of the backend to use.
When doing content-switching between frontend and backends using the "use_backend" keyword, it is often useful to indicate which backend will be used when no rule has matched. It generally is the dynamic backend which will catch all undetermined requests.
use_backend dynamic if url_dyn
use_backend static if url_css url_img extension_img
default_backend dynamic
Describe a listen, frontend or backend.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
Allows to add a sentence to describe the related object in the HAProxy HTML stats page. The description will be printed on the right of the object name it describes. No need to backslash spaces in the <string> arguments.
Disable a proxy, frontend or backend.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
The "disabled" keyword is used to disable an instance, mainly in order to liberate a listening port or to temporarily disable a service. The instance will still be created and its configuration will be checked, but it will be created in the "stopped" state and will appear as such in the statistics. It will not receive any traffic nor will it send any health-checks or logs. It is possible to disable many instances at once by adding the "disabled" keyword in a "defaults" section.
Set a default server address
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | no | yes | yes |
<address> is the IPv4 address of the default server. Alternatively, a resolvable hostname is supported, but this name will be resolved during start-up. <ports> is a mandatory port specification. All connections will be sent to this port, and it is not permitted to use port offsets as is possible with normal servers.
The "dispatch" keyword designates a default server for use when no other server can take the connection. In the past it was used to forward non persistent connections to an auxiliary load balancer. Due to its simple syntax, it has also been used for simple TCP relays. It is recommended not to use it for more clarity, and to use the "server" directive instead.
Set the dynamic cookie secret key for a backend.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
When dynamic cookies are enabled (see the "dynamic" directive for cookie),
a dynamic cookie is created for each server (unless one is explicitly
specified on the "server" line), using a hash of the IP address of the
server, the TCP port, and the secret key.
That way, we can ensure session persistence across multiple load-balancers,
even if servers are dynamically added or removed.
Enable a proxy, frontend or backend.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
The "enabled" keyword is used to explicitly enable an instance, when the defaults has been set to "disabled". This is very rarely used.
Return a file contents instead of errors generated by HAProxy
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<code> is the HTTP status code. Currently, HAProxy is capable of generating codes 200, 400, 403, 404, 405, 408, 410, 413, 425, 429, 500, 502, 503, and 504. <file> designates a file containing the full HTTP response. It is recommended to follow the common practice of appending ".http" to the filename so that people do not confuse the response with HTML error pages, and to use absolute paths, since files are read before any chroot is performed.
It is important to understand that this keyword is not meant to rewrite errors returned by the server, but errors detected and returned by HAProxy. This is why the list of supported errors is limited to a small set. Code 200 is emitted in response to requests matching a "monitor-uri" rule. The files are returned verbatim on the TCP socket. This allows any trick such as redirections to another URL or site, as well as tricks to clean cookies, force enable or disable caching, etc... The package provides default error files returning the same contents as default errors. The files should not exceed the configured buffer size (BUFSIZE), which generally is 8 or 16 kB, otherwise they will be truncated. It is also wise not to put any reference to local contents (e.g. images) in order to avoid loops between the client and HAProxy when all servers are down, causing an error to be returned instead of an image. For better HTTP compliance, it is recommended that all header lines end with CR-LF and not LF alone. The files are read at the same time as the configuration and kept in memory. For this reason, the errors continue to be returned even when the process is chrooted, and no file change is considered while the process is running. A simple method for developing those files consists in associating them to the 403 status code and interrogating a blocked URL.
errorfile 400 /etc/haproxy/errorfiles/400badreq.http
errorfile 408 /dev/null # work around Chrome pre-connect bug
errorfile 403 /etc/haproxy/errorfiles/403forbid.http
errorfile 503 /etc/haproxy/errorfiles/503sorry.http
Return an HTTP redirection to a URL instead of errors generated by HAProxy
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<code> is the HTTP status code. Currently, HAProxy is capable of generating codes 200, 400, 403, 404, 405, 408, 410, 413, 425, 429, 500, 502, 503, and 504. <url> it is the exact contents of the "Location" header. It may contain either a relative URI to an error page hosted on the same site, or an absolute URI designating an error page on another site. Special care should be given to relative URIs to avoid redirect loops if the URI itself may generate the same error (e.g. 500).
It is important to understand that this keyword is not meant to rewrite errors returned by the server, but errors detected and returned by HAProxy. This is why the list of supported errors is limited to a small set. Code 200 is emitted in response to requests matching a "monitor-uri" rule. Note that both keyword return the HTTP 302 status code, which tells the client to fetch the designated URL using the same HTTP method. This can be quite problematic in case of non-GET methods such as POST, because the URL sent to the client might not be allowed for something other than GET. To work around this problem, please use "errorloc303" which send the HTTP 303 status code, indicating to the client that the URL must be fetched with a GET request.
Return an HTTP redirection to a URL instead of errors generated by HAProxy
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<code> is the HTTP status code. Currently, HAProxy is capable of generating codes 200, 400, 403, 404, 405, 408, 410, 413, 425, 429, 500, 502, 503, and 504. <url> it is the exact contents of the "Location" header. It may contain either a relative URI to an error page hosted on the same site, or an absolute URI designating an error page on another site. Special care should be given to relative URIs to avoid redirect loops if the URI itself may generate the same error (e.g. 500).
It is important to understand that this keyword is not meant to rewrite errors returned by the server, but errors detected and returned by HAProxy. This is why the list of supported errors is limited to a small set. Code 200 is emitted in response to requests matching a "monitor-uri" rule. Note that both keyword return the HTTP 303 status code, which tells the client to fetch the designated URL using the same HTTP GET method. This solves the usual problems associated with "errorloc" and the 302 code. It is possible that some very old browsers designed before HTTP/1.1 do not support it, but no such problem has been reported till now.
Declare the from email address to be used in both the envelope and header of email alerts. This is the address that email alerts are sent from.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<emailaddr> is the from email address to use when sending email alerts
Also requires "email-alert mailers" and "email-alert to" to be set and if so sending email alerts is enabled for the proxy.
Declare the maximum log level of messages for which email alerts will be sent. This acts as a filter on the sending of email alerts.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<level> One of the 8 syslog levels: emerg alert crit err warning notice info debug The above syslog levels are ordered from lowest to highest.
By default level is alert Also requires "email-alert from", "email-alert mailers" and "email-alert to" to be set and if so sending email alerts is enabled for the proxy. Alerts are sent when : * An un-paused server is marked as down and <level> is alert or lower * A paused server is marked as down and <level> is notice or lower * A server is marked as up or enters the drain state and <level> is notice or lower * "option log-health-checks" is enabled, <level> is info or lower, and a health check status update occurs
Declare the mailers to be used when sending email alerts
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<mailersect> is the name of the mailers section to send email alerts.
Also requires "email-alert from" and "email-alert to" to be set and if so sending email alerts is enabled for the proxy.
Declare the to hostname address to be used when communicating with mailers.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<hostname> is the hostname to use when communicating with mailers
By default the systems hostname is used. Also requires "email-alert from", "email-alert mailers" and "email-alert to" to be set and if so sending email alerts is enabled for the proxy.
Declare both the recipient address in the envelope and to address in the header of email alerts. This is the address that email alerts are sent to.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<emailaddr> is the to email address to use when sending email alerts
Also requires "email-alert mailers" and "email-alert to" to be set and if so sending email alerts is enabled for the proxy.
Declare a condition to force persistence on down servers
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | no | yes | yes |
By default, requests are not dispatched to down servers. It is possible to force this using "option persist", but it is unconditional and redispatches to a valid server if "option redispatch" is set. That leaves with very little possibilities to force some requests to reach a server which is artificially marked down for maintenance operations. The "force-persist" statement allows one to declare various ACL-based conditions which, when met, will cause a request to ignore the down status of a server and still try to connect to it. That makes it possible to start a server, still replying an error to the health checks, and run a specially configured browser to test the service. Among the handy methods, one could use a specific source IP address, or a specific cookie. The cookie also has the advantage that it can easily be added/removed on the browser from a test page. Once the service is validated, it is then possible to open the service to the world by returning a valid response to health checks. The forced persistence is enabled when an "if" condition is met, or unless an "unless" condition is met. The final redispatch is always disabled when this is used.
Add the filter <name> in the filter list attached to the proxy.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
<name> is the name of the filter. Officially supported filters are referenced in section 9. <param*> is a list of parameters accepted by the filter <name>. The parsing of these parameters are the responsibility of the filter. Please refer to the documentation of the corresponding filter (section 9) for all details on the supported parameters.
Multiple occurrences of the filter line can be used for the same proxy. The same filter can be referenced many times if needed.
listen
bind *:80
filter trace name BEFORE-HTTP-COMP
filter compression
filter trace name AFTER-HTTP-COMP
compression algo gzip
compression offload
server srv1 192.168.0.1:80
Specify at what backend load the servers will reach their maxconn
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<conns> is the number of connections on the backend which will make the servers use the maximal number of connections.
When a server has a "maxconn" parameter specified, it means that its number of concurrent connections will never go higher. Additionally, if it has a "minconn" parameter, it indicates a dynamic limit following the backend's load. The server will then always accept at least <minconn> connections, never more than <maxconn>, and the limit will be on the ramp between both values when the backend has less than <conns> concurrent connections. This makes it possible to limit the load on the servers during normal loads, but push it further for important loads without overloading the servers during exceptional loads. Since it's hard to get this value right, haproxy automatically sets it to 10% of the sum of the maxconns of all frontends that may branch to this backend (based on "use_backend" and "default_backend" rules). That way it's safe to leave it unset. However, "use_backend" involving dynamic names are not counted since there is no way to know if they could match or not.
# The servers will accept between 100 and 1000 concurrent connections each
# and the maximum of 1000 will be reached when the backend reaches 10000
# connections.
backend dynamic
fullconn 10000
server srv1 dyn1:80 minconn 100 maxconn 1000
server srv2 dyn2:80 minconn 100 maxconn 1000
Maintain a proxy operational for some time after a soft stop
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<time> is the time (by default in milliseconds) for which the instance will remain operational with the frontend sockets still listening when a soft-stop is received via the SIGUSR1 signal.
This may be used to ensure that the services disappear in a certain order. This was designed so that frontends which are dedicated to monitoring by an external equipment fail immediately while other ones remain up for the time needed by the equipment to detect the failure. Note that currently, there is very little benefit in using this parameter, and it may in fact complicate the soft-reconfiguration process more than simplify it.
Specify the balancing factor for bounded-load consistent hashing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | no | yes |
<factor> is the control for the maximum number of concurrent requests to send to a server, expressed as a percentage of the average number of concurrent requests across all of the active servers.
Specifying a "hash-balance-factor" for a server with "hash-type consistent" enables an algorithm that prevents any one server from getting too many requests at once, even if some hash buckets receive many more requests than others. Setting <factor> to 0 (the default) disables the feature. Otherwise, <factor> is a percentage greater than 100. For example, if <factor> is 150, then no server will be allowed to have a load more than 1.5 times the average. If server weights are used, they will be respected. If the first-choice server is disqualified, the algorithm will choose another server based on the request hash, until a server with additional capacity is found. A higher <factor> allows more imbalance between the servers, while a lower <factor> means that more servers will be checked on average, affecting performance. Reasonable values are from 125 to 200. This setting is also used by "balance random" which internally relies on the consistent hashing mechanism.
Specify a method to use for mapping hashes to servers
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<method> is the method used to select a server from the hash computed by the <function> : map-based the hash table is a static array containing all alive servers. The hashes will be very smooth, will consider weights, but will be static in that weight changes while a server is up will be ignored. This means that there will be no slow start. Also, since a server is selected by its position in the array, most mappings are changed when the server count changes. This means that when a server goes up or down, or when a server is added to a farm, most connections will be redistributed to different servers. This can be inconvenient with caches for instance. consistent the hash table is a tree filled with many occurrences of each server. The hash key is looked up in the tree and the closest server is chosen. This hash is dynamic, it supports changing weights while the servers are up, so it is compatible with the slow start feature. It has the advantage that when a server goes up or down, only its associations are moved. When a server is added to the farm, only a few part of the mappings are redistributed, making it an ideal method for caches. However, due to its principle, the distribution will never be very smooth and it may sometimes be necessary to adjust a server's weight or its ID to get a more balanced distribution. In order to get the same distribution on multiple load balancers, it is important that all servers have the exact same IDs. Note: consistent hash uses sdbm and avalanche if no hash function is specified. <function> is the hash function to be used : sdbm this function was created initially for sdbm (a public-domain reimplementation of ndbm) database library. It was found to do well in scrambling bits, causing better distribution of the keys and fewer splits. It also happens to be a good general hashing function with good distribution, unless the total server weight is a multiple of 64, in which case applying the avalanche modifier may help. djb2 this function was first proposed by Dan Bernstein many years ago on comp.lang.c. Studies have shown that for certain workload this function provides a better distribution than sdbm. It generally works well with text-based inputs though it can perform extremely poorly with numeric-only input or when the total server weight is a multiple of 33, unless the avalanche modifier is also used. wt6 this function was designed for haproxy while testing other functions in the past. It is not as smooth as the other ones, but is much less sensible to the input data set or to the number of servers. It can make sense as an alternative to sdbm+avalanche or djb2+avalanche for consistent hashing or when hashing on numeric data such as a source IP address or a visitor identifier in a URL parameter. crc32 this is the most common CRC32 implementation as used in Ethernet, gzip, PNG, etc. It is slower than the other ones but may provide a better distribution or less predictable results especially when used on strings. <modifier> indicates an optional method applied after hashing the key : avalanche This directive indicates that the result from the hash function above should not be used in its raw form but that a 4-byte full avalanche hash must be applied first. The purpose of this step is to mix the resulting bits from the previous hash in order to avoid any undesired effect when the input contains some limited values or when the number of servers is a multiple of one of the hash's components (64 for SDBM, 33 for DJB2). Enabling avalanche tends to make the result less predictable, but it's also not as smooth as when using the original function. Some testing might be needed with some workloads. This hash is one of the many proposed by Bob Jenkins.
The default hash type is "map-based" and is recommended for most usages. The default function is "sdbm", the selection of a function should be based on the range of the values being hashed.
Enable a maintenance mode upon HTTP/404 response to health-checks
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
When this option is set, a server which returns an HTTP code 404 will be excluded from further load-balancing, but will still receive persistent connections. This provides a very convenient method for Web administrators to perform a graceful shutdown of their servers. It is also important to note that a server which is detected as failed while it was in this mode will not generate an alert, just a notice. If the server responds 2xx or 3xx again, it will immediately be reinserted into the farm. The status on the stats page reports "NOLB" for a server in this mode. It is important to note that this option only works in conjunction with the "httpchk" option. If this option is used with "http-check expect", then it has precedence over it so that 404 responses will still be considered as soft-stop.
Make HTTP health checks consider response contents or specific status codes
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<match> is a keyword indicating how to look for a specific pattern in the response. The keyword may be one of "status", "rstatus", "string", or "rstring". The keyword may be preceded by an exclamation mark ("!") to negate the match. Spaces are allowed between the exclamation mark and the keyword. See below for more details on the supported keywords. <pattern> is the pattern to look for. It may be a string or a regular expression. If the pattern contains spaces, they must be escaped with the usual backslash ('\').
By default, "option httpchk" considers that response statuses 2xx and 3xx are valid, and that others are invalid. When "http-check expect" is used, it defines what is considered valid or invalid. Only one "http-check" statement is supported in a backend. If a server fails to respond or times out, the check obviously fails. The available matches are : status <string> : test the exact string match for the HTTP status code. A health check response will be considered valid if the response's status code is exactly this string. If the "status" keyword is prefixed with "!", then the response will be considered invalid if the status code matches. rstatus <regex> : test a regular expression for the HTTP status code. A health check response will be considered valid if the response's status code matches the expression. If the "rstatus" keyword is prefixed with "!", then the response will be considered invalid if the status code matches. This is mostly used to check for multiple codes. string <string> : test the exact string match in the HTTP response body. A health check response will be considered valid if the response's body contains this exact string. If the "string" keyword is prefixed with "!", then the response will be considered invalid if the body contains this string. This can be used to look for a mandatory word at the end of a dynamic page, or to detect a failure when a specific error appears on the check page (e.g. a stack trace). rstring <regex> : test a regular expression on the HTTP response body. A health check response will be considered valid if the response's body matches this expression. If the "rstring" keyword is prefixed with "!", then the response will be considered invalid if the body matches the expression. This can be used to look for a mandatory word at the end of a dynamic page, or to detect a failure when a specific error appears on the check page (e.g. a stack trace). It is important to note that the responses will be limited to a certain size defined by the global "tune.chksize" option, which defaults to 16384 bytes. Thus, too large responses may not contain the mandatory pattern when using "string" or "rstring". If a large response is absolutely required, it is possible to change the default max size by setting the global variable. However, it is worth keeping in mind that parsing very large responses can waste some CPU cycles, especially when regular expressions are used, and that it is always better to focus the checks on smaller resources. Also "http-check expect" doesn't support HTTP keep-alive. Keep in mind that it will automatically append a "Connection: close" header, meaning that this header should not be present in the request provided by "option httpchk". Last, if "http-check expect" is combined with "http-check disable-on-404", then this last one has precedence when the server responds with 404.
# only accept status 200 as valid
http-check expect status 200
# consider SQL errors as errors
http-check expect ! string SQL\ Error
# consider status 5xx only as errors
http-check expect ! rstatus ^5
# check that we have a correct hexadecimal tag before /html
http-check expect rstring <!--tag:[0-9a-f]*--></html>
Add a possible list of headers and/or a body to the request sent during HTTP health checks.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
hdr <name> <value> adds the HTTP header field whose name is specified in <name> and whose value is defined by <value> to the request sent during HTTP health checks. body <string> add the body defined by <string> to the request sent sent during HTTP health checks. If defined, the "Content-Length" header is thus automatically added to the request.
In addition to the request line defined by the "option httpchk" directive, this one is the valid way to add some headers and optionally a body to the request sent during HTTP health checks. If a body is defined, the associate "Content-Length" header is automatically added. The old trick consisting to add headers after the version string on the "option httpchk" line is now deprecated. Note also the "Connection: close" header is still added if a "http-check expect" direcive is defined independently of this directive, just like the state header if the directive "http-check send-state" is defined.
Enable emission of a state header with HTTP health checks
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
When this option is set, haproxy will systematically send a special header "X-Haproxy-Server-State" with a list of parameters indicating to each server how they are seen by haproxy. This can be used for instance when a server is manipulated without access to haproxy and the operator needs to know whether haproxy still sees it up or not, or if the server is the last one in a farm. The header is composed of fields delimited by semi-colons, the first of which is a word ("UP", "DOWN", "NOLB"), possibly followed by a number of valid checks on the total number before transition, just as appears in the stats interface. Next headers are in the form "<variable>=<value>", indicating in no specific order some values available in the stats interface : - a variable "address", containing the address of the backend server. This corresponds to the <address> field in the server declaration. For unix domain sockets, it will read "unix". - a variable "port", containing the port of the backend server. This corresponds to the <port> field in the server declaration. For unix domain sockets, it will read "unix". - a variable "name", containing the name of the backend followed by a slash ("/") then the name of the server. This can be used when a server is checked in multiple backends. - a variable "node" containing the name of the haproxy node, as set in the global "node" variable, otherwise the system's hostname if unspecified. - a variable "weight" indicating the weight of the server, a slash ("/") and the total weight of the farm (just counting usable servers). This helps to know if other servers are available to handle the load when this one fails. - a variable "scur" indicating the current number of concurrent connections on the server, followed by a slash ("/") then the total number of connections on all servers of the same backend. - a variable "qcur" indicating the current number of requests in the server's queue. Example of a header received by the application server : >>> X-Haproxy-Server-State: UP 2/3; name=bck/srv2; node=lb1; weight=1/2; \ scur=13/22; qcur=0
Access control for Layer 7 requests
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
The http-request statement defines a set of rules which apply to layer 7 processing. The rules are evaluated in their declaration order when they are met in a frontend, listen or backend section. Any rule may optionally be followed by an ACL-based condition, in which case it will only be evaluated if the condition is true. The first keyword is the rule's action. The supported actions are described below. There is no limit to the number of http-request statements per instance. It is important to know that http-request rules are processed very early in the HTTP processing, just after "block" rules and before "reqdel" or "reqrep" or "reqadd" rules. That way, headers added by "add-header"/"set-header" are visible by almost all further ACL rules. Using "reqadd"/"reqdel"/"reqrep" to manipulate request headers is discouraged in newer versions (>= 1.5). But if you need to use regular expression to delete headers, you can still use "reqdel". Also please use "http-request deny/allow/tarpit" instead of "reqdeny"/"reqpass"/"reqtarpit".
acl nagios src 192.168.129.3
acl local_net src 192.168.0.0/16
acl auth_ok http_auth(L1)
http-request allow if nagios
http-request allow if local_net auth_ok
http-request auth realm Gimme if local_net auth_ok
http-request deny
acl key req.hdr(X-Add-Acl-Key) -m found
acl add path /addacl
acl del path /delacl
acl myhost hdr(Host) -f myhost.lst
http-request add-acl(myhost.lst) %[req.hdr(X-Add-Acl-Key)] if key add
http-request del-acl(myhost.lst) %[req.hdr(X-Add-Acl-Key)] if key del
acl value req.hdr(X-Value) -m found
acl setmap path /setmap
acl delmap path /delmap
use_backend bk_appli if { hdr(Host),map_str(map.lst) -m found }
http-request set-map(map.lst) %[src] %[req.hdr(X-Value)] if setmap value
http-request del-map(map.lst) %[src] if delmap
This is used to add a new entry into an ACL. The ACL must be loaded from a file (even a dummy empty file). The file name of the ACL to be updated is passed between parentheses. It takes one argument: <key fmt>, which follows log-format rules, to collect content of the new entry. It performs a lookup in the ACL before insertion, to avoid duplicated (or more) values. This lookup is done by a linear search and can be expensive with large lists! It is the equivalent of the "add acl" command from the stats socket, but can be triggered by an HTTP request.
This appends an HTTP header field whose name is specified in <name> and whose value is defined by <fmt> which follows the log-format rules (see Custom Log Format in section 8.2.4). This is particularly useful to pass connection-specific information to the server (e.g. the client's SSL certificate), or to combine several headers into one. This rule is not final, so it is possible to add other similar rules. Note that header addition is performed immediately, so one rule might reuse the resulting header from a previous rule.
This stops the evaluation of the rules and lets the request pass the check.
No further "http-request" rules are evaluated.
This stops the evaluation of the rules and immediately responds with an
HTTP 401 or 407 error code to invite the user to present a valid user name
and password. No further "http-request" rules are evaluated. An optional
"realm" parameter is supported, it sets the authentication realm that is
returned with the response (typically the application's name).
acl auth_ok http_auth_group(L1) G1
http-request auth unless auth_ok
See section 10.2 about cache setup.
This captures sample expression <sample> from the request buffer, and converts it to a string of at most <len> characters. The resulting string is stored into the next request "capture" slot, so it will possibly appear next to some captured HTTP headers. It will then automatically appear in the logs, and it will be possible to extract it using sample fetch rules to feed it into headers or anything. The length should be limited given that this size will be allocated for each capture during the whole session life. Please check section 7.3 (Fetching samples) and "capture request header" for more information. If the keyword "id" is used instead of "len", the action tries to store the captured string in a previously declared capture slot. This is useful to run captures in backends. The slot id can be declared by a previous directive "http-request capture" or with the "declare capture" keyword. When using this action in a backend, double check that the relevant frontend(s) have the required capture slots otherwise, this rule will be ignored at run time. This can't be detected at configuration parsing time due to HAProxy's ability to dynamically resolve backend name at runtime.
This is used to delete an entry from an ACL. The ACL must be loaded from a file (even a dummy empty file). The file name of the ACL to be updated is passed between parentheses. It takes one argument: <key fmt>, which follows log-format rules, to collect content of the entry to delete. It is the equivalent of the "del acl" command from the stats socket, but can be triggered by an HTTP request.
This removes all HTTP header fields whose name is specified in <name>.
This is used to delete an entry from a MAP. The MAP must be loaded from a file (even a dummy empty file). The file name of the MAP to be updated is passed between parentheses. It takes one argument: <key fmt>, which follows log-format rules, to collect content of the entry to delete. It takes one argument: "file name" It is the equivalent of the "del map" command from the stats socket, but can be triggered by an HTTP request.
This stops the evaluation of the rules and immediately rejects the request and emits an HTTP 403 error, or optionally the status code specified as an argument to "deny_status". The list of permitted status codes is limited to those that can be overridden by the "errorfile" directive. No further "http-request" rules are evaluated.
This disables any attempt to retry the request if it fails for any other reason than a connection failure. This can be useful for example to make sure POST requests aren't retried on failure.
This action performs a DNS resolution of the output of <expr> and stores the result in the variable <var>. It uses the DNS resolvers section pointed by <resolvers>. It is possible to choose a resolution preference using the optional arguments 'ipv4' or 'ipv6'. When performing the DNS resolution, the client side connection is on pause waiting till the end of the resolution. If an IP address can be found, it is stored into <var>. If any kind of error occurs, then <var> is not set. One can use this action to discover a server IP address at run time and based on information found in the request (IE a Host header). If this action is used to find the server's IP address (using the "set-dst" action), then the server IP address in the backend must be set to 0.0.0.0. The do-resolve action takes an host-only parameter, any port must be removed from the string.
resolvers mydns
nameserver local 127.0.0.53:53
nameserver google 8.8.8.8:53
timeout retry 1s
hold valid 10s
hold nx 3s
hold other 3s
hold obsolete 0s
accepted_payload_size 8192
frontend fe
bind 10.42.0.1:80
http-request do-resolve(txn.myip,mydns,ipv4) hdr(Host),lower,regsub(:[0-9]*$,)
http-request capture var(txn.myip) len 40
# return 503 when the variable is not set,
# which mean DNS resolution error
use_backend b_503 unless { var(txn.myip) -m found }
default_backend be
backend b_503
# dummy backend used to return 503.
# one can use the errorfile directive to send a nice
# 503 error page to end users
backend be
# rule to prevent HAProxy from reconnecting to services
# on the local network (forged DNS name used to scan the network)
http-request deny if { var(txn.myip) -m ip 127.0.0.0/8 10.0.0.0/8 }
http-request set-dst var(txn.myip)
server clear 0.0.0.0:0
NOTE: Don't forget to set the "protection" rules to ensure HAProxy won't be used to scan the network or worst won't loop over itself...
This is used to build an HTTP 103 Early Hints response prior to any other one. This appends an HTTP header field to this response whose name is specified in <name> and whose value is defined by <fmt> which follows the log-format rules (see Custom Log Format in section 8.2.4). This is particularly useful to pass to the client some Link headers to preload resources required to render the HTML documents. See RFC 8297 for more information.
This performs an HTTP redirection based on a redirect rule. This is exactly the same as the "redirect" statement except that it inserts a redirect rule which can be processed in the middle of other "http-request" rules and that these rules use the "log-format" strings. See the "redirect" keyword for the rule's syntax.
This stops the evaluation of the rules and immediately closes the connection without sending any response. It acts similarly to the "tcp-request content reject" rules. It can be useful to force an immediate connection closure on HTTP/2 connections.
This matches the value of all occurrences of header field <name> against <match-regex>. Matching is performed case-sensitively. Matching values are completely replaced by <replace-fmt>. Format characters are allowed in <replace-fmt> and work like <fmt> arguments in "http-request add-header". Standard back-references using the backslash ('\') followed by a number are supported. This action acts on whole header lines, regardless of the number of values they may contain. Thus it is well-suited to process headers naturally containing commas in their value, such as If-Modified-Since. Headers that contain a comma-separated list of values, such as Accept, should be processed using "http-request replace-value".
http-request replace-header Cookie foo=([^;]*);(.*) foo=\1;ip=%bi;\2
# applied to:
Cookie: foo=foobar; expires=Tue, 14-Jun-2016 01:40:45 GMT;
# outputs:
Cookie: foo=foobar;ip=192.168.1.20; expires=Tue, 14-Jun-2016 01:40:45 GMT;
# assuming the backend IP is 192.168.1.20
http-request replace-header User-Agent curl foo
# applied to:
User-Agent: curl/7.47.0
# outputs:
User-Agent: foo
This works like "replace-header" except that it works on the request's path component instead of a header. The path component starts at the first '/' after an optional scheme+authority and ends before the question mark. Thus, the replacement does not modify the scheme, the authority and the query-string. It is worth noting that regular expressions may be more expensive to evaluate than certain ACLs, so rare replacements may benefit from a condition to avoid performing the evaluation at all if it does not match.
# prefix /foo : turn /bar?q=1 into /foo/bar?q=1 :
http-request replace-path (.*) /foo\1
# strip /foo : turn /foo/bar?q=1 into /bar?q=1
http-request replace-path /foo/(.*) /\1
# or more efficient if only some requests match :
http-request replace-path /foo/(.*) /\1 if { url_beg /foo/ }
This works like "replace-header" except that it works on the request's URI part instead of a header. The URI part may contain an optional scheme, authority or query string. These are considered to be part of the value that is matched against. It is worth noting that regular expressions may be more expensive to evaluate than certain ACLs, so rare replacements may benefit from a condition to avoid performing the evaluation at all if it does not match. IMPORTANT NOTE: historically in HTTP/1.x, the vast majority of requests sent by browsers use the "origin form", which differs from the "absolute form" in that they do not contain a scheme nor authority in the URI portion. Mostly only requests sent to proxies, those forged by hand and some emitted by certain applications use the absolute form. As such, "replace-uri" usually works fine most of the time in HTTP/1.x with rules starting with a "/". But with HTTP/2, clients are encouraged to send absolute URIs only, which look like the ones HTTP/1 clients use to talk to proxies. Such partial replace-uri rules may then fail in HTTP/2 when they work in HTTP/1. Either the rules need to be adapted to optionally match a scheme and authority, or replace-path should be used.
# rewrite all "http" absolute requests to "https":
http-request replace-uri ^http://(.*) https://\1
# prefix /foo : turn /bar?q=1 into /foo/bar?q=1 :
http-request replace-uri ([^/:]*://[^/]*)?(.*) \1/foo\2
This works like "replace-header" except that it matches the regex against every comma-delimited value of the header field <name> instead of the entire header. This is suited for all headers which are allowed to carry more than one value. An example could be the Accept header.
http-request replace-value X-Forwarded-For ^192\.168\.(.*)$ 172.16.\1
# applied to:
X-Forwarded-For: 192.168.10.1, 192.168.13.24, 10.0.0.37
# outputs:
X-Forwarded-For: 172.16.10.1, 172.16.13.24, 10.0.0.37
This actions increments the GPC0 or GPC1 counter according with the sticky counter designated by <sc-id>. If an error occurs, this action silently fails and the actions evaluation continues.
This action sets the GPT0 tag according to the sticky counter designated by <sc-id> and the value of <int>. The expected result is a boolean. If an error occurs, this action silently fails and the actions evaluation continues.
This is used to set the destination IP address to the value of specified expression. Useful when a proxy in front of HAProxy rewrites destination IP, but provides the correct IP in a HTTP header; or you want to mask the IP for privacy. If you want to connect to the new address/port, use '0.0.0.0:0' as a server address in the backend.
<expr> Is a standard HAProxy expression formed by a sample-fetch followed by some converters.
http-request set-dst hdr(x-dst)
http-request set-dst dst,ipmask(24)
When possible, set-dst preserves the original destination port as long as the address family allows it, otherwise the destination port is set to 0.
This is used to set the destination port address to the value of specified expression. If you want to connect to the new address/port, use '0.0.0.0:0' as a server address in the backend.
<expr> Is a standard HAProxy expression formed by a sample-fetch followed by some converters.
http-request set-dst-port hdr(x-port)
http-request set-dst-port int(4000)
When possible, set-dst-port preserves the original destination address as long as the address family supports a port, otherwise it forces the destination address to IPv4 "0.0.0.0" before rewriting the port.
This does the same as "http-request add-header" except that the header name is first removed if it existed. This is useful when passing security information to the server, where the header must not be manipulated by external users. Note that the new value is computed before the removal so it is possible to concatenate a value to an existing header.
http-request set-header X-Haproxy-Current-Date %T
http-request set-header X-SSL %[ssl_fc]
http-request set-header X-SSL-Session_ID %[ssl_fc_session_id,hex]
http-request set-header X-SSL-Client-Verify %[ssl_c_verify]
http-request set-header X-SSL-Client-DN %{+Q}[ssl_c_s_dn]
http-request set-header X-SSL-Client-CN %{+Q}[ssl_c_s_dn(cn)]
http-request set-header X-SSL-Issuer %{+Q}[ssl_c_i_dn]
http-request set-header X-SSL-Client-NotBefore %{+Q}[ssl_c_notbefore]
http-request set-header X-SSL-Client-NotAfter %{+Q}[ssl_c_notafter]
This is used to change the log level of the current request when a certain
condition is met. Valid levels are the 8 syslog levels (see the "log"
keyword) plus the special level "silent" which disables logging for this
request. This rule is not final so the last matching rule wins. This rule
can be useful to disable health checks coming from another equipment.
This is used to add a new entry into a MAP. The MAP must be loaded from a file (even a dummy empty file). The file name of the MAP to be updated is passed between parentheses. It takes 2 arguments: <key fmt>, which follows log-format rules, used to collect MAP key, and <value fmt>, which follows log-format rules, used to collect content for the new entry. It performs a lookup in the MAP before insertion, to avoid duplicated (or more) values. This lookup is done by a linear search and can be expensive with large lists! It is the equivalent of the "set map" command from the stats socket, but can be triggered by an HTTP request.
This is used to set the Netfilter MARK on all packets sent to the client to the value passed in <mark> on platforms which support it. This value is an unsigned 32 bit value which can be matched by netfilter and by the routing table. It can be expressed both in decimal or hexadecimal format (prefixed by "0x"). This can be useful to force certain packets to take a different route (for example a cheaper network path for bulk downloads). This works on Linux kernels 2.6.32 and above and requires admin privileges.
This rewrites the request method with the result of the evaluation of format string <fmt>. There should be very few valid reasons for having to do so as this is more likely to break something than to fix it.
This sets the "nice" factor of the current request being processed. It only has effect against the other requests being processed at the same time. The default value is 0, unless altered by the "nice" setting on the "bind" line. The accepted range is -1024..1024. The higher the value, the nicest the request will be. Lower values will make the request more important than other ones. This can be useful to improve the speed of some requests, or lower the priority of non-important requests. Using this setting without prior experimentation can cause some major slowdown.
This rewrites the request path with the result of the evaluation of format string <fmt>. The query string, if any, is left intact. If a scheme and authority is found before the path, they are left intact as well. If the request doesn't have a path ("*"), this one is replaced with the format. This can be used to prepend a directory component in front of a path for example. See also "http-request set-query" and "http-request set-uri".
# prepend the host name before the path
http-request set-path /%[hdr(host)]%[path]
This is used to set the queue priority class of the current request. The value must be a sample expression which converts to an integer in the range -2047..2047. Results outside this range will be truncated. The priority class determines the order in which queued requests are processed. Lower values have higher priority.
This is used to set the queue priority timestamp offset of the current request. The value must be a sample expression which converts to an integer in the range -524287..524287. Results outside this range will be truncated. When a request is queued, it is ordered first by the priority class, then by the current timestamp adjusted by the given offset in milliseconds. Lower values have higher priority. Note that the resulting timestamp is is only tracked with enough precision for 524,287ms (8m44s287ms). If the request is queued long enough to where the adjusted timestamp exceeds this value, it will be misidentified as highest priority. Thus it is important to set "timeout queue" to a value, where when combined with the offset, does not exceed this limit.
This rewrites the request's query string which appears after the first question mark ("?") with the result of the evaluation of format string <fmt>. The part prior to the question mark is left intact. If the request doesn't contain a question mark and the new value is not empty, then one is added at the end of the URI, followed by the new value. If a question mark was present, it will never be removed even if the value is empty. This can be used to add or remove parameters from the query string. See also "http-request set-query" and "http-request set-uri".
# replace "%3D" with "=" in the query string
http-request set-query %[query,regsub(%3D,=,g)]
This is used to set the source IP address to the value of specified expression. Useful when a proxy in front of HAProxy rewrites source IP, but provides the correct IP in a HTTP header; or you want to mask source IP for privacy. All subsequent calls to "src" fetch will return this value (see example).
<expr> Is a standard HAProxy expression formed by a sample-fetch followed by some converters.
See also "option forwardfor".
http-request set-src hdr(x-forwarded-for)
http-request set-src src,ipmask(24)
# After the masking this will track connections
# based on the IP address with the last byte zeroed out.
http-request track-sc0 src
When possible, set-src preserves the original source port as long as the address family allows it, otherwise the source port is set to 0.
This is used to set the source port address to the value of specified expression.
<expr> Is a standard HAProxy expression formed by a sample-fetch followed by some converters.
http-request set-src-port hdr(x-port)
http-request set-src-port int(4000)
When possible, set-src-port preserves the original source address as long as the address family supports a port, otherwise it forces the source address to IPv4 "0.0.0.0" before rewriting the port.
This is used to set the TOS or DSCP field value of packets sent to the client to the value passed in <tos> on platforms which support this. This value represents the whole 8 bits of the IP TOS field, and can be expressed both in decimal or hexadecimal format (prefixed by "0x"). Note that only the 6 higher bits are used in DSCP or TOS, and the two lower bits are always 0. This can be used to adjust some routing behavior on border routers based on some information from the request. See RFC 2474, 2597, 3260 and 4594 for more information.
This rewrites the request URI with the result of the evaluation of format string <fmt>. The scheme, authority, path and query string are all replaced at once. This can be used to rewrite hosts in front of proxies, or to perform complex modifications to the URI such as moving parts between the path and the query string. See also "http-request set-path" and "http-request set-query".
This is used to set the contents of a variable. The variable is declared inline.
<var-name> The name of the variable starts with an indication about its scope. The scopes allowed are: "proc" : the variable is shared with the whole process "sess" : the variable is shared with the whole session "txn" : the variable is shared with the transaction (request and response) "req" : the variable is shared only during request processing "res" : the variable is shared only during response processing This prefix is followed by a name. The separator is a '.'. The name may only contain characters 'a-z', 'A-Z', '0-9' and '_'. <expr> Is a standard HAProxy expression formed by a sample-fetch followed by some converters.
http-request set-var(req.my_var) req.fhdr(user-agent),lower
This action is used to trigger sending of a group of SPOE messages. To do so, the SPOE engine used to send messages must be defined, as well as the SPOE group to send. Of course, the SPOE engine must refer to an existing SPOE filter. If not engine name is provided on the SPOE filter line, the SPOE agent name must be used.
<engine-name> The SPOE engine name. <group-name> The SPOE group name as specified in the engine configuration.
This stops the evaluation of the rules and makes the client-facing connection suddenly disappear using a system-dependent way that tries to prevent the client from being notified. The effect it then that the client still sees an established connection while there's none on HAProxy. The purpose is to achieve a comparable effect to "tarpit" except that it doesn't use any local resource at all on the machine running HAProxy. It can resist much higher loads than "tarpit", and slow down stronger attackers. It is important to understand the impact of using this mechanism. All stateful equipment placed between the client and HAProxy (firewalls, proxies, load balancers) will also keep the established connection for a long time and may suffer from this action. On modern Linux systems running with enough privileges, the TCP_REPAIR socket option is used to block the emission of a TCP reset. On other systems, the socket's TTL is reduced to 1 so that the TCP reset doesn't pass the first router, though it's still delivered to local networks. Do not use it unless you fully understand how it works.
This stops the evaluation of the rules and immediately blocks the request without responding for a delay specified by "timeout tarpit" or "timeout connect" if the former is not set. After that delay, if the client is still connected, an HTTP error 500 (or optionally the status code specified as an argument to "deny_status") is returned so that the client does not suspect it has been tarpitted. Logs will report the flags "PT". The goal of the tarpit rule is to slow down robots during an attack when they're limited on the number of concurrent requests. It can be very efficient against very dumb robots, and will significantly reduce the load on firewalls compared to a "deny" rule. But when facing "correctly" developed robots, it can make things worse by forcing haproxy and the front firewall to support insane number of concurrent connections. See also the "silent-drop" action.
This enables tracking of sticky counters from current request. These rules do not stop evaluation and do not change default action. The number of counters that may be simultaneously tracked by the same connection is set in MAX_SESS_STKCTR at build time (reported in haproxy -vv) which defaults to 3, so the track-sc number is between 0 and (MAX_SESS_STCKTR-1). The first "track-sc0" rule executed enables tracking of the counters of the specified table as the first set. The first "track-sc1" rule executed enables tracking of the counters of the specified table as the second set. The first "track-sc2" rule executed enables tracking of the counters of the specified table as the third set. It is a recommended practice to use the first set of counters for the per-frontend counters and the second set for the per-backend ones. But this is just a guideline, all may be used everywhere.
<key> is mandatory, and is a sample expression rule as described in section 7.3. It describes what elements of the incoming request or connection will be analyzed, extracted, combined, and used to select which table entry to update the counters. <table> is an optional table to be used instead of the default one, which is the stick-table declared in the current proxy. All the counters for the matches and updates for the key will then be performed in that table until the session ends.
Once a "track-sc*" rule is executed, the key is looked up in the table and if it is not found, an entry is allocated for it. Then a pointer to that entry is kept during all the session's life, and this entry's counters are updated as often as possible, every time the session's counters are updated, and also systematically when the session ends. Counters are only updated for events that happen after the tracking has been started. As an exception, connection counters and request counters are systematically updated so that they reflect useful information. If the entry tracks concurrent connection counters, one connection is counted for as long as the entry is tracked, and the entry will not expire during that time. Tracking counters also provides a performance advantage over just checking the keys, because only one table lookup is performed for all ACL checks that make use of it.
This is used to unset a variable. See above for details about <var-name>.
http-request unset-var(req.my_var)
This directive executes the configured HTTP service to reply to the request
and stops the evaluation of the rules. An HTTP service may choose to reply by
sending any valid HTTP response or it may immediately close the connection
without sending any response. Outside natives services, for instance the
Prometheus exporter, it is possible to write your own services in Lua. No
further "http-request" rules are evaluated.
<service-name> is mandatory. It is the service to call
http-request use-service prometheus-exporter if { path /metrics }
This will delay the processing of the request until the SSL handshake happened. This is mostly useful to delay processing early data until we're sure they are valid.
Access control for Layer 7 responses
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
The http-response statement defines a set of rules which apply to layer 7 processing. The rules are evaluated in their declaration order when they are met in a frontend, listen or backend section. Any rule may optionally be followed by an ACL-based condition, in which case it will only be evaluated if the condition is true. Since these rules apply on responses, the backend rules are applied first, followed by the frontend's rules. The first keyword is the rule's action. The supported actions are described below. There is no limit to the number of http-response statements per instance. It is important to know that http-response rules are processed very early in the HTTP processing, before "rspdel" or "rsprep" or "rspadd" rules. That way, headers added by "add-header"/"set-header" are visible by almost all further ACL rules. Using "rspadd"/"rspdel"/"rsprep" to manipulate request headers is discouraged in newer versions (>= 1.5). But if you need to use regular expression to delete headers, you can still use "rspdel". Also please use "http-response deny" instead of "rspdeny".
acl key_acl res.hdr(X-Acl-Key) -m found
acl myhost hdr(Host) -f myhost.lst
http-response add-acl(myhost.lst) %[res.hdr(X-Acl-Key)] if key_acl
http-response del-acl(myhost.lst) %[res.hdr(X-Acl-Key)] if key_acl
acl value res.hdr(X-Value) -m found
use_backend bk_appli if { hdr(Host),map_str(map.lst) -m found }
http-response set-map(map.lst) %[src] %[res.hdr(X-Value)] if value
http-response del-map(map.lst) %[src] if ! value
This is used to add a new entry into an ACL. The ACL must be loaded from a file (even a dummy empty file). The file name of the ACL to be updated is passed between parentheses. It takes one argument: <key fmt>, which follows log-format rules, to collect content of the new entry. It performs a lookup in the ACL before insertion, to avoid duplicated (or more) values. This lookup is done by a linear search and can be expensive with large lists! It is the equivalent of the "add acl" command from the stats socket, but can be triggered by an HTTP response.
This appends an HTTP header field whose name is specified in <name> and whose value is defined by <fmt> which follows the log-format rules (see Custom Log Format in section 8.2.4). This may be used to send a cookie to a client for example, or to pass some internal information. This rule is not final, so it is possible to add other similar rules. Note that header addition is performed immediately, so one rule might reuse the resulting header from a previous rule.
This stops the evaluation of the rules and lets the response pass the check.
No further "http-response" rules are evaluated for the current section.
See section 10.2 about cache setup.
This captures sample expression <sample> from the response buffer, and converts it to a string. The resulting string is stored into the next request "capture" slot, so it will possibly appear next to some captured HTTP headers. It will then automatically appear in the logs, and it will be possible to extract it using sample fetch rules to feed it into headers or anything. Please check section 7.3 (Fetching samples) and "capture response header" for more information. The keyword "id" is the id of the capture slot which is used for storing the string. The capture slot must be defined in an associated frontend. This is useful to run captures in backends. The slot id can be declared by a previous directive "http-response capture" or with the "declare capture" keyword. When using this action in a backend, double check that the relevant frontend(s) have the required capture slots otherwise, this rule will be ignored at run time. This can't be detected at configuration parsing time due to HAProxy's ability to dynamically resolve backend name at runtime.
This is used to delete an entry from an ACL. The ACL must be loaded from a file (even a dummy empty file). The file name of the ACL to be updated is passed between parentheses. It takes one argument: <key fmt>, which follows log-format rules, to collect content of the entry to delete. It is the equivalent of the "del acl" command from the stats socket, but can be triggered by an HTTP response.
This removes all HTTP header fields whose name is specified in <name>.
This is used to delete an entry from a MAP. The MAP must be loaded from a file (even a dummy empty file). The file name of the MAP to be updated is passed between parentheses. It takes one argument: <key fmt>, which follows log-format rules, to collect content of the entry to delete. It takes one argument: "file name" It is the equivalent of the "del map" command from the stats socket, but can be triggered by an HTTP response.
This stops the evaluation of the rules and immediately rejects the response
and emits an HTTP 502 error. No further "http-response" rules are evaluated.
This performs an HTTP redirection based on a redirect rule. This supports a format string similarly to "http-request redirect" rules, with the exception that only the "location" type of redirect is possible on the response. See the "redirect" keyword for the rule's syntax. When a redirect rule is applied during a response, connections to the server are closed so that no data can be forwarded from the server to the client.
This works like "http-request replace-header" except that it works on the server's response instead of the client's request.
http-response replace-header Set-Cookie (C=[^;]*);(.*) \1;ip=%bi;\2
# applied to:
Set-Cookie: C=1; expires=Tue, 14-Jun-2016 01:40:45 GMT
# outputs:
Set-Cookie: C=1;ip=192.168.1.20; expires=Tue, 14-Jun-2016 01:40:45 GMT
# assuming the backend IP is 192.168.1.20.
This works like "http-response replace-value" except that it works on the server's response instead of the client's request.
http-response replace-value Cache-control ^public$ private
# applied to:
Cache-Control: max-age=3600, public
# outputs:
Cache-Control: max-age=3600, private
This action increments the GPC0 or GPC1 counter according with the sticky counter designated by <sc-id>. If an error occurs, this action silently fails and the actions evaluation continues.
This action sets the GPT0 tag according to the sticky counter designated by <sc-id> and the value of <int>. The expected result is a boolean. If an error occurs, this action silently fails and the actions evaluation continues.
This action is used to trigger sending of a group of SPOE messages. To do so, the SPOE engine used to send messages must be defined, as well as the SPOE group to send. Of course, the SPOE engine must refer to an existing SPOE filter. If not engine name is provided on the SPOE filter line, the SPOE agent name must be used.
<engine-name> The SPOE engine name. <group-name> The SPOE group name as specified in the engine configuration.
This does the same as "add-header" except that the header name is first removed if it existed. This is useful when passing security information to the server, where the header must not be manipulated by external users.
This is used to change the log level of the current request when a certain
condition is met. Valid levels are the 8 syslog levels (see the "log"
keyword) plus the special level "silent" which disables logging for this
request. This rule is not final so the last matching rule wins. This rule can
be useful to disable health checks coming from another equipment.
This is used to add a new entry into a MAP. The MAP must be loaded from a file (even a dummy empty file). The file name of the MAP to be updated is passed between parentheses. It takes 2 arguments: <key fmt>, which follows log-format rules, used to collect MAP key, and <value fmt>, which follows log-format rules, used to collect content for the new entry. It performs a lookup in the MAP before insertion, to avoid duplicated (or more) values. This lookup is done by a linear search and can be expensive with large lists! It is the equivalent of the "set map" command from the stats socket, but can be triggered by an HTTP response.
This is used to set the Netfilter MARK on all packets sent to the client to the value passed in <mark> on platforms which support it. This value is an unsigned 32 bit value which can be matched by netfilter and by the routing table. It can be expressed both in decimal or hexadecimal format (prefixed by "0x"). This can be useful to force certain packets to take a different route (for example a cheaper network path for bulk downloads). This works on Linux kernels 2.6.32 and above and requires admin privileges.
This sets the "nice" factor of the current request being processed. It only has effect against the other requests being processed at the same time. The default value is 0, unless altered by the "nice" setting on the "bind" line. The accepted range is -1024..1024. The higher the value, the nicest the request will be. Lower values will make the request more important than other ones. This can be useful to improve the speed of some requests, or lower the priority of non-important requests. Using this setting without prior experimentation can cause some major slowdown.
This replaces the response status code with <status> which must be an integer between 100 and 999. Optionally, a custom reason text can be provided defined by <str>, or the default reason for the specified code will be used as a fallback.
# return "431 Request Header Fields Too Large"
http-response set-status 431
# return "503 Slow Down", custom reason
http-response set-status 503 reason "Slow Down".
This is used to set the TOS or DSCP field value of packets sent to the client to the value passed in <tos> on platforms which support this. This value represents the whole 8 bits of the IP TOS field, and can be expressed both in decimal or hexadecimal format (prefixed by "0x"). Note that only the 6 higher bits are used in DSCP or TOS, and the two lower bits are always 0. This can be used to adjust some routing behavior on border routers based on some information from the request. See RFC 2474, 2597, 3260 and 4594 for more information.
This is used to set the contents of a variable. The variable is declared inline.
<var-name> The name of the variable starts with an indication about its scope. The scopes allowed are: "proc" : the variable is shared with the whole process "sess" : the variable is shared with the whole session "txn" : the variable is shared with the transaction (request and response) "req" : the variable is shared only during request processing "res" : the variable is shared only during response processing This prefix is followed by a name. The separator is a '.'. The name may only contain characters 'a-z', 'A-Z', '0-9', '.' and '_'. <expr> Is a standard HAProxy expression formed by a sample-fetch followed by some converters.
http-response set-var(sess.last_redir) res.hdr(location)
This stops the evaluation of the rules and makes the client-facing connection suddenly disappear using a system-dependent way that tries to prevent the client from being notified. The effect it then that the client still sees an established connection while there's none on HAProxy. The purpose is to achieve a comparable effect to "tarpit" except that it doesn't use any local resource at all on the machine running HAProxy. It can resist much higher loads than "tarpit", and slow down stronger attackers. It is important to understand the impact of using this mechanism. All stateful equipment placed between the client and HAProxy (firewalls, proxies, load balancers) will also keep the established connection for a long time and may suffer from this action. On modern Linux systems running with enough privileges, the TCP_REPAIR socket option is used to block the emission of a TCP reset. On other systems, the socket's TTL is reduced to 1 so that the TCP reset doesn't pass the first router, though it's still delivered to local networks. Do not use it unless you fully understand how it works.
This enables tracking of sticky counters from current response. Please refer to "http-request track-sc" for a complete description. The only difference from "http-request track-sc" is the <key> sample expression can only make use of samples in response (e.g. res.*, status etc.) and samples below Layer 6 (e.g. SSL-related samples, see section 7.3.4). If the sample is not supported, haproxy will fail and warn while parsing the config.
This is used to unset a variable. See "http-response set-var" for details about <var-name>.
http-response unset-var(sess.last_redir)
Declare how idle HTTP connections may be shared between requests
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
By default, a connection established between haproxy and the backend server which is considered safe for reuse is moved back to the server's idle connections pool so that any other request can make use of it. This is the "safe" strategy below. The argument indicates the desired connection reuse strategy : - "never" : idle connections are never shared between sessions. This mode may be enforced to cancel a different strategy inherited from a defaults section or for troubleshooting. For example, if an old bogus application considers that multiple requests over the same connection come from the same client and it is not possible to fix the application, it may be desirable to disable connection sharing in a single backend. An example of such an application could be an old haproxy using cookie insertion in tunnel mode and not checking any request past the first one. - "safe" : this is the default and the recommended strategy. The first request of a session is always sent over its own connection, and only subsequent requests may be dispatched over other existing connections. This ensures that in case the server closes the connection when the request is being sent, the browser can decide to silently retry it. Since it is exactly equivalent to regular keep-alive, there should be no side effects. - "aggressive" : this mode may be useful in webservices environments where all servers are not necessarily known and where it would be appreciable to deliver most first requests over existing connections. In this case, first requests are only delivered over existing connections that have been reused at least once, proving that the server correctly supports connection reuse. It should only be used when it's sure that the client can retry a failed request once in a while and where the benefit of aggressive connection reuse significantly outweighs the downsides of rare connection failures. - "always" : this mode is only recommended when the path to the server is known for never breaking existing connections quickly after releasing them. It allows the first request of a session to be sent to an existing connection. This can provide a significant performance increase over the "safe" strategy when the backend is a cache farm, since such components tend to show a consistent behavior and will benefit from the connection sharing. It is recommended that the "http-keep-alive" timeout remains low in this mode so that no dead connections remain usable. In most cases, this will lead to the same performance gains as "aggressive" but with more risks. It should only be used when it improves the situation over "aggressive". When http connection sharing is enabled, a great care is taken to respect the connection properties and compatibility. Specifically : - connections made with "usesrc" followed by a client-dependent value ("client", "clientip", "hdr_ip") are marked private and never shared; - connections sent to a server with a TLS SNI extension are marked private and are never shared; - connections with certain bogus authentication schemes (relying on the connection) like NTLM are detected, marked private and are never shared; A connection pool is involved and configurable with "pool-max-conn". Note: connection reuse improves the accuracy of the "server maxconn" setting, because almost no new connection will be established while idle connections remain available. This is particularly true with the "always" strategy. The rules to decide to keep an idle connection opened or to close it after processing are also governed by the "tune.pool-low-fd-ratio" (default: 20%) and "tune.pool-high-fd-ratio" (default: 25%). These correspond to the percentage of total file descriptors spent in idle connections above which haproxy will respectively refrain from keeping a connection opened after a response, and actively kill idle connections. Some setups using a very high ratio of idle connections, either because of too low a global "maxconn", or due to a lot of HTTP/2 or HTTP/3 traffic on the frontend (few connections) but HTTP/1 connections on the backend, may observe a lower reuse rate because too few connections are kept open. It may be desirable in this case to adjust such thresholds or simply to increase the global "maxconn" value. Similarly, when thread groups are explicitly enabled, it is important to understand that idle connections are only usable between threads from a same group. As such it may happen that unfair load between groups leads to more idle connections being needed, causing a lower reuse rate. The same solution may then be applied (increase global "maxconn" or increase pool ratios).
Add the server name to a request. Use the header string given by <header>
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<header> The header string to use to send the server name
The "http-send-name-header" statement causes the header field named <header> to be set to the name of the target server at the moment the request is about to be sent on the wire. Any existing occurrences of this header are removed. Upon retries and redispatches, the header field is updated to always reflect the server being attempted to connect to. Given that this header is modified very late in the connection setup, it may have unexpected effects on already modified headers. For example using it with transport-level header such as connection, content-length, transfer-encoding and so on will likely result in invalid requests being sent to the server. Additionally it has been reported that this directive is currently being used as a way to overwrite the Host header field in outgoing requests; while this trick has been known to work as a side effect of the feature for some time, it is not officially supported and might possibly not work anymore in a future version depending on the technical difficulties this feature induces. A long-term solution instead consists in fixing the application which required this trick so that it binds to the correct host name.
Set a persistent ID to a proxy.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
Set a persistent ID for the proxy. This ID must be unique and positive. An unused ID will automatically be assigned if unset. The first assigned value will be 1. This ID is currently only returned in statistics.
Declare a condition to ignore persistence
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | no | yes | yes |
By default, when cookie persistence is enabled, every requests containing the cookie are unconditionally persistent (assuming the target server is up and running). The "ignore-persist" statement allows one to declare various ACL-based conditions which, when met, will cause a request to ignore persistence. This is sometimes useful to load balance requests for static files, which often don't require persistence. This can also be used to fully disable persistence for a specific User-Agent (for example, some web crawler bots). The persistence is ignored when an "if" condition is met, or unless an "unless" condition is met.
acl url_static path_beg /static /images /img /css
acl url_static path_end .gif .png .jpg .css .js
ignore-persist if url_static
Allow seamless reload of HAProxy
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
This directive points HAProxy to a file where server state from previous running process has been saved. That way, when starting up, before handling traffic, the new process can apply old states to servers exactly has if no reload occurred. The purpose of the "load-server-state-from-file" directive is to tell haproxy which file to use. For now, only 2 arguments to either prevent loading state or load states from a file containing all backends and servers. The state file can be generated by running the command "show servers state" over the stats socket and redirect output. The format of the file is versioned and is very specific. To understand it, please read the documentation of the "show servers state" command (chapter 9.3 of Management Guide).
global load the content of the file pointed by the global directive named "server-state-file". local load the content of the file pointed by the directive "server-state-file-name" if set. If not set, then the backend name is used as a file name. none don't load any stat for this backend
Notes: - server's IP address is preserved across reloads by default, but the order can be changed thanks to the server's "init-addr" setting. This means that an IP address change performed on the CLI at run time will be preserved, and that any change to the local resolver (e.g. /etc/hosts) will possibly not have any effect if the state file is in use. - server's weight is applied from previous running process unless it has has changed between previous and new configuration files.
Minimal configurationglobal stats socket /tmp/socket server-state-file /tmp/server_state defaults load-server-state-from-file global backend bk server s1 127.0.0.1:22 check weight 11 server s2 127.0.0.1:22 check weight 12
Then one can run : socat /tmp/socket - <<< "show servers state" > /tmp/server_state Content of the file /tmp/server_state would be like this: 1 # <field names skipped for the doc example> 1 bk 1 s1 127.0.0.1 2 0 11 11 4 6 3 4 6 0 0 1 bk 2 s2 127.0.0.1 2 0 12 12 4 6 3 4 6 0 0
Minimal configurationglobal stats socket /tmp/socket server-state-base /etc/haproxy/states defaults load-server-state-from-file local backend bk server s1 127.0.0.1:22 check weight 11 server s2 127.0.0.1:22 check weight 12
Then one can run : socat /tmp/socket - <<< "show servers state bk" > /etc/haproxy/states/bk Content of the file /etc/haproxy/states/bk would be like this: 1 # <field names skipped for the doc example> 1 bk 1 s1 127.0.0.1 2 0 11 11 4 6 3 4 6 0 0 1 bk 2 s2 127.0.0.1 2 0 12 12 4 6 3 4 6 0 0
Enable per-instance logging of events and traffic.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
Prefix : no should be used when the logger list must be flushed. For example, if you don't want to inherit from the default logger list. This prefix does not allow arguments.
global should be used when the instance's logging parameters are the same as the global ones. This is the most common usage. "global" replaces <address>, <facility> and <level> with those of the log entries found in the "global" section. Only one "log global" statement may be used per instance, and this form takes no other parameter. <address> indicates where to send the logs. It takes the same format as for the "global" section's logs, and can be one of : - An IPv4 address optionally followed by a colon (':') and a UDP port. If no port is specified, 514 is used by default (the standard syslog port). - An IPv6 address followed by a colon (':') and optionally a UDP port. If no port is specified, 514 is used by default (the standard syslog port). - A filesystem path to a UNIX domain socket, keeping in mind considerations for chroot (be sure the path is accessible inside the chroot) and uid/gid (be sure the path is appropriately writable). - A file descriptor number in the form "fd@<number>", which may point to a pipe, terminal, or socket. In this case unbuffered logs are used and one writev() call per log is performed. This is a bit expensive but acceptable for most workloads. Messages sent this way will not be truncated but may be dropped, in which case the DroppedLogs counter will be incremented. The writev() call is atomic even on pipes for messages up to PIPE_BUF size, which POSIX recommends to be at least 512 and which is 4096 bytes on most modern operating systems. Any larger message may be interleaved with messages from other processes. Exceptionally for debugging purposes the file descriptor may also be directed to a file, but doing so will significantly slow haproxy down as non-blocking calls will be ignored. Also there will be no way to purge nor rotate this file without restarting the process. Note that the configured syslog format is preserved, so the output is suitable for use with a TCP syslog server. See also the "short" and "raw" formats below. - "stdout" / "stderr", which are respectively aliases for "fd@1" and "fd@2", see above. You may want to reference some environment variables in the address parameter, see section 2.3 about environment variables. <length> is an optional maximum line length. Log lines larger than this value will be truncated before being sent. The reason is that syslog servers act differently on log line length. All servers support the default value of 1024, but some servers simply drop larger lines while others do log them. If a server supports long lines, it may make sense to set this value here in order to avoid truncating long lines. Similarly, if a server drops long lines, it is preferable to truncate them before sending them. Accepted values are 80 to 65535 inclusive. The default value of 1024 is generally fine for all standard usages. Some specific cases of long captures or JSON-formatted logs may require larger values. <ranges> A list of comma-separated ranges to identify the logs to sample. This is used to balance the load of the logs to send to the log server. The limits of the ranges cannot be null. They are numbered from 1. The size or period (in number of logs) of the sample must be set with <sample_size> parameter. <sample_size> The size of the sample in number of logs to consider when balancing their logging loads. It is used to balance the load of the logs to send to the syslog server. This size must be greater or equal to the maximum of the high limits of the ranges. (see also <ranges> parameter). <format> is the log format used when generating syslog messages. It may be one of the following : rfc3164 The RFC3164 syslog message format. This is the default. (https://tools.ietf.org/html/rfc3164) rfc5424 The RFC5424 syslog message format. (https://tools.ietf.org/html/rfc5424) short A message containing only a level between angle brackets such as '<3>', followed by the text. The PID, date, time, process name and system name are omitted. This is designed to be used with a local log server. This format is compatible with what the systemd logger consumes. raw A message containing only the text. The level, PID, date, time, process name and system name are omitted. This is designed to be used in containers or during development, where the severity only depends on the file descriptor used (stdout/stderr). <facility> must be one of the 24 standard syslog facilities : kern user mail daemon auth syslog lpr news uucp cron auth2 ftp ntp audit alert cron2 local0 local1 local2 local3 local4 local5 local6 local7 Note that the facility is ignored for the "short" and "raw" formats, but still required as a positional field. It is recommended to use "daemon" in this case to make it clear that it's only supposed to be used locally. <level> is optional and can be specified to filter outgoing messages. By default, all messages are sent. If a level is specified, only messages with a severity at least as important as this level will be sent. An optional minimum level can be specified. If it is set, logs emitted with a more severe level than this one will be capped to this level. This is used to avoid sending "emerg" messages on all terminals on some default syslog configurations. Eight levels are known : emerg alert crit err warning notice info debug
It is important to keep in mind that it is the frontend which decides what to log from a connection, and that in case of content switching, the log entries from the backend will be ignored. Connections are logged at level "info". However, backend log declaration define how and where servers status changes will be logged. Level "notice" will be used to indicate a server going up, "warning" will be used for termination signals and definitive service termination, and "alert" will be used for when a server goes down. Note : According to RFC3164, messages are truncated to 1024 bytes before being emitted.
log global
log stdout format short daemon # send log to systemd
log stdout format raw daemon # send everything to stdout
log stderr format raw daemon notice # send important events to stderr
log 127.0.0.1:514 local0 notice # only send important events
log 127.0.0.1:514 local0 notice notice # same but limit output level
log "${LOCAL_SYSLOG}:514" local0 notice # send to local server
Specifies the log format string to use for traffic logs
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
This directive specifies the log format string that will be used for all logs resulting from traffic passing through the frontend using this line. If the directive is used in a defaults section, all subsequent frontends will use the same log format. Please see section 8.2.4 which covers the log format string in depth. "log-format" directive overrides previous "option tcplog", "log-format" and "option httplog" directives.
Specifies the RFC5424 structured-data log format string
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
This directive specifies the RFC5424 structured-data log format string that will be used for all logs resulting from traffic passing through the frontend using this line. If the directive is used in a defaults section, all subsequent frontends will use the same log format. Please see section 8.2.4 which covers the log format string in depth. See https://tools.ietf.org/html/rfc5424#section-6.3 for more information about the RFC5424 structured-data part. Note : This log format string will be used only for loggers that have set log format to "rfc5424".
log-format-sd [exampleSDID@1234\ bytes=\"%B\"\ status=\"%ST\"]
Specifies the log tag to use for all outgoing logs
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
Sets the tag field in the syslog header to this string. It defaults to the
log-tag set in the global section, otherwise the program name as launched
from the command line, which usually is "haproxy". Sometimes it can be useful
to differentiate between multiple processes running on the same host, or to
differentiate customer instances running in the same process. In the backend,
logs about servers up/down will use this tag. As a hint, it can be convenient
to set a log-tag related to a hosted customer in a defaults section then put
all the frontends and backends for that customer, then start another customer
in a new defaults section. See also the global "log-tag" directive.
Set the maximum server queue size for maintaining keep-alive connections
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
HTTP keep-alive tries to reuse the same server connection whenever possible, but sometimes it can be counter-productive, for example if a server has a lot of connections while other ones are idle. This is especially true for static servers. The purpose of this setting is to set a threshold on the number of queued connections at which haproxy stops trying to reuse the same server and prefers to find another one. The default value, -1, means there is no limit. A value of zero means that keep-alive requests will never be queued. For very close servers which can be reached with a low latency and which are not sensible to breaking keep-alive, a low value is recommended (e.g. local static server can use a value of 10 or less). For remote servers suffering from a high latency, higher values might be needed to cover for the latency and/or the cost of picking a different server. Note that this has no impact on responses which are maintained to the same server consecutively to a 401 response. They will still go to the same server even if they have to be queued.
Set the maximum number of outgoing connections we can keep idling for a given client session. The default is 5 (it precisely equals MAX_SRV_LIST which is defined at build time).
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
Fix the maximum number of concurrent connections on a frontend
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
<conns> is the maximum number of concurrent connections the frontend will accept to serve. Excess connections will be queued by the system in the socket's listen queue and will be served once a connection closes.
If the system supports it, it can be useful on big sites to raise this limit
very high so that haproxy manages connection queues, instead of leaving the
clients with unanswered connection attempts. This value should not exceed the
global maxconn. Also, keep in mind that a connection contains two buffers
of tune.bufsize (16kB by default) each, as well as some other data resulting
in about 33 kB of RAM being consumed per established connection. That means
that a medium system equipped with 1GB of RAM can withstand around
20000-25000 concurrent connections if properly tuned.
Also, when <conns> is set to large values, it is possible that the servers
are not sized to accept such loads, and for this reason it is generally wise
to assign them some reasonable connection limits.
When this value is set to zero, which is the default, the global "maxconn"
value is used.
Set the running mode or protocol of the instance
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
tcp The instance will work in pure TCP mode. A full-duplex connection will be established between clients and servers, and no layer 7 examination will be performed. This is the default mode. It should be used for SSL, SSH, SMTP, ... http The instance will work in HTTP mode. The client request will be analyzed in depth before connecting to any server. Any request which is not RFC-compliant will be rejected. Layer 7 filtering, processing and switching will be possible. This is the mode which brings HAProxy most of its value. health The instance will work in "health" mode. It will just reply "OK" to incoming connections and close the connection. Alternatively, If the "httpchk" option is set, "HTTP/1.0 200 OK" will be sent instead. Nothing will be logged in either case. This mode is used to reply to external components health checks. This mode is deprecated and should not be used anymore as it is possible to do the same and even better by combining TCP or HTTP modes with the "monitor" keyword.
When doing content switching, it is mandatory that the frontend and the backend are in the same mode (generally HTTP), otherwise the configuration will be refused.
defaults http_instances
mode http
Add a condition to report a failure to a monitor HTTP request.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | no |
if <cond> the monitor request will fail if the condition is satisfied, and will succeed otherwise. The condition should describe a combined test which must induce a failure if all conditions are met, for instance a low number of servers both in a backend and its backup. unless <cond> the monitor request will succeed only if the condition is satisfied, and will fail otherwise. Such a condition may be based on a test on the presence of a minimum number of active servers in a list of backends.
This statement adds a condition which can force the response to a monitor request to report a failure. By default, when an external component queries the URI dedicated to monitoring, a 200 response is returned. When one of the conditions above is met, haproxy will return 503 instead of 200. This is very useful to report a site failure to an external component which may base routing advertisements between multiple sites on the availability reported by haproxy. In this case, one would rely on an ACL involving the "nbsrv" criterion. Note that "monitor fail" only works in HTTP mode. Both status messages may be tweaked using "errorfile" or "errorloc" if needed.
frontend www
mode http
acl site_dead nbsrv(dynamic) lt 2
acl site_dead nbsrv(static) lt 2
monitor-uri /site_alive
monitor fail if site_dead
Declare a source network which is limited to monitor requests
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
<source> is the source IPv4 address or network which will only be able to get monitor responses to any request. It can be either an IPv4 address, a host name, or an address followed by a slash ('/') followed by a mask.
In TCP mode, any connection coming from a source matching <source> will cause the connection to be immediately closed without any log. This allows another equipment to probe the port and verify that it is still listening, without forwarding the connection to a remote server. In HTTP mode, a connection coming from a source matching <source> will be accepted, the following response will be sent without waiting for a request, then the connection will be closed : "HTTP/1.0 200 OK". This is normally enough for any front-end HTTP probe to detect that the service is UP and running without forwarding the request to a backend server. Note that this response is sent in raw format, without any transformation. This is important as it means that it will not be SSL-encrypted on SSL listeners. Monitor requests are processed very early, just after tcp-request connection ACLs which are the only ones able to block them. These connections are short lived and never wait for any data from the client. They cannot be logged, and it is the intended purpose. They are only used to report HAProxy's health to an upper component, nothing more. Please note that "monitor fail" rules do not apply to connections intercepted by "monitor-net". Last, please note that only one "monitor-net" statement can be specified in a frontend. If more than one is found, only the last one will be considered.
# addresses .252 and .253 are just probing us.
frontend www
monitor-net 192.168.0.252/31
Intercept a URI used by external components' monitor requests
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
<uri> is the exact URI which we want to intercept to return HAProxy's health status instead of forwarding the request.
When an HTTP request referencing <uri> will be received on a frontend, HAProxy will not forward it nor log it, but instead will return either "HTTP/1.0 200 OK" or "HTTP/1.0 503 Service unavailable", depending on failure conditions defined with "monitor fail". This is normally enough for any front-end HTTP probe to detect that the service is UP and running without forwarding the request to a backend server. Note that the HTTP method, the version and all headers are ignored, but the request must at least be valid at the HTTP level. This keyword may only be used with an HTTP-mode frontend. Monitor requests are processed very early, just after the request is parsed and even before any "http-request" or "block" rulesets. The only rulesets applied before are the tcp-request ones. They cannot be logged either, and it is the intended purpose. They are only used to report HAProxy's health to an upper component, nothing more. However, it is possible to add any number of conditions using "monitor fail" and ACLs so that the result can be adjusted to whatever check can be imagined (most often the number of available servers in a backend).
# Use /haproxy_test to report haproxy's status
frontend www
mode http
monitor-uri /haproxy_test
Enable or disable early dropping of aborted requests pending in queues.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
In presence of very high loads, the servers will take some time to respond. The per-instance connection queue will inflate, and the response time will increase respective to the size of the queue times the average per-session response time. When clients will wait for more than a few seconds, they will often hit the "STOP" button on their browser, leaving a useless request in the queue, and slowing down other users, and the servers as well, because the request will eventually be served, then aborted at the first error encountered while delivering the response. As there is no way to distinguish between a full STOP and a simple output close on the client side, HTTP agents should be conservative and consider that the client might only have closed its output channel while waiting for the response. However, this introduces risks of congestion when lots of users do the same, and is completely useless nowadays because probably no client at all will close the session while waiting for the response. Some HTTP agents support this behavior (Squid, Apache, HAProxy), and others do not (TUX, most hardware-based load balancers). So the probability for a closed input channel to represent a user hitting the "STOP" button is close to 100%, and the risk of being the single component to break rare but valid traffic is extremely low, which adds to the temptation to be able to abort a session early while still not served and not pollute the servers. In HAProxy, the user can choose the desired behavior using the option "abortonclose". By default (without the option) the behavior is HTTP compliant and aborted requests will be served. But when the option is specified, a session with an incoming channel closed will be aborted while it is still possible, either pending in the queue for a connection slot, or during the connection establishment if the server has not yet acknowledged the connection request. This considerably reduces the queue size and the load on saturated servers when users are tempted to click on STOP, which in turn reduces the response time for other users. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable relaxing of HTTP request parsing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
By default, HAProxy complies with RFC7230 in terms of message parsing. This means that invalid characters in header names are not permitted and cause an error to be returned to the client. This is the desired behavior as such forbidden characters are essentially used to build attacks exploiting server weaknesses, and bypass security filtering. Sometimes, a buggy browser or server will emit invalid header names for whatever reason (configuration, implementation) and the issue will not be immediately fixed. In such a case, it is possible to relax HAProxy's header name parser to accept any character even if that does not make sense, by specifying this option. Similarly, the list of characters allowed to appear in a URI is well defined by RFC3986, and chars 0-31, 32 (space), 34 ('"'), 60 ('<'), 62 ('>'), 92 ('\'), 94 ('^'), 96 ('`'), 123 ('{'), 124 ('|'), 125 ('}'), 127 (delete) and anything above are not allowed at all. HAProxy always blocks a number of them (0..32, 127). The remaining ones are blocked by default unless this option is enabled. This option also relaxes the test on the HTTP version, it allows HTTP/0.9 requests to pass through (no version specified) and multiple digits for both the major and the minor version. Finally, this option also allows incoming URLs to contain fragment references ('#' after the path). This option should never be enabled by default as it hides application bugs and open security breaches. It should only be deployed after a problem has been confirmed. When this option is enabled, erroneous header names will still be accepted in requests, but the complete request will be captured in order to permit later analysis using the "show errors" request on the UNIX stats socket. Similarly, requests containing invalid chars in the URI part will be logged. Doing this also helps confirming that the issue has been solved. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable relaxing of HTTP response parsing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
By default, HAProxy complies with RFC7230 in terms of message parsing. This means that invalid characters in header names are not permitted and cause an error to be returned to the client. This is the desired behavior as such forbidden characters are essentially used to build attacks exploiting server weaknesses, and bypass security filtering. Sometimes, a buggy browser or server will emit invalid header names for whatever reason (configuration, implementation) and the issue will not be immediately fixed. In such a case, it is possible to relax HAProxy's header name parser to accept any character even if that does not make sense, by specifying this option. This option also relaxes the test on the HTTP version format, it allows multiple digits for both the major and the minor version. This option should never be enabled by default as it hides application bugs and open security breaches. It should only be deployed after a problem has been confirmed. When this option is enabled, erroneous header names will still be accepted in responses, but the complete response will be captured in order to permit later analysis using the "show errors" request on the UNIX stats socket. Doing this also helps confirming that the issue has been solved. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Use either all backup servers at a time or only the first one
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
By default, the first operational backup server gets all traffic when normal servers are all down. Sometimes, it may be preferred to use multiple backups at once, because one will not be enough. When "option allbackups" is enabled, the load balancing will be performed among all backup servers when all normal ones are unavailable. The same load balancing algorithm will be used and the servers' weights will be respected. Thus, there will not be any priority order between the backup servers anymore. This option is mostly used with static server farms dedicated to return a "sorry" page when an application is completely offline. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Analyze all server responses and block responses with cacheable cookies
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
Some high-level frameworks set application cookies everywhere and do not always let enough control to the developer to manage how the responses should be cached. When a session cookie is returned on a cacheable object, there is a high risk of session crossing or stealing between users traversing the same caches. In some situations, it is better to block the response than to let some sensitive session information go in the wild. The option "checkcache" enables deep inspection of all server responses for strict compliance with HTTP specification in terms of cacheability. It carefully checks "Cache-control", "Pragma" and "Set-cookie" headers in server response to check if there's a risk of caching a cookie on a client-side proxy. When this option is enabled, the only responses which can be delivered to the client are : - all those without "Set-Cookie" header; - all those with a return code other than 200, 203, 204, 206, 300, 301, 404, 405, 410, 414, 501, provided that the server has not set a "Cache-control: public" header field; - all those that result from a request using a method other than GET, HEAD, OPTIONS, TRACE, provided that the server has not set a 'Cache-Control: public' header field; - those with a 'Pragma: no-cache' header - those with a 'Cache-control: private' header - those with a 'Cache-control: no-store' header - those with a 'Cache-control: max-age=0' header - those with a 'Cache-control: s-maxage=0' header - those with a 'Cache-control: no-cache' header - those with a 'Cache-control: no-cache="set-cookie"' header - those with a 'Cache-control: no-cache="set-cookie,' header (allowing other fields after set-cookie) If a response doesn't respect these requirements, then it will be blocked just as if it was from an "rspdeny" filter, with an "HTTP 502 bad gateway". The session state shows "PH--" meaning that the proxy blocked the response during headers processing. Additionally, an alert will be sent in the logs so that admins are informed that there's something to be fixed. Due to the high impact on the application, the application should be tested in depth with the option enabled before going to production. It is also a good practice to always activate it during tests, even if it is not used in production, as it will report potentially dangerous application behaviors. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable the sending of TCP keepalive packets on the client side
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
When there is a firewall or any session-aware component between a client and a server, and when the protocol involves very long sessions with long idle periods (e.g. remote desktops), there is a risk that one of the intermediate components decides to expire a session which has remained idle for too long. Enabling socket-level TCP keep-alives makes the system regularly send packets to the other end of the connection, leaving it active. The delay between keep-alive probes is controlled by the system only and depends both on the operating system and its tuning parameters. It is important to understand that keep-alive packets are neither emitted nor received at the application level. It is only the network stacks which sees them. For this reason, even if one side of the proxy already uses keep-alives to maintain its connection alive, those keep-alive packets will not be forwarded to the other side of the proxy. Please note that this has nothing to do with HTTP keep-alive. Using option "clitcpka" enables the emission of TCP keep-alive probes on the client side of a connection, which should help when session expirations are noticed between HAProxy and a client. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable continuous traffic statistics updates
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
By default, counters used for statistics calculation are incremented only when a session finishes. It works quite well when serving small objects, but with big ones (for example large images or archives) or with A/V streaming, a graph generated from haproxy counters looks like a hedgehog. With this option enabled counters get incremented frequently along the session, typically every 5 seconds, which is often enough to produce clean graphs. Recounting touches a hotpath directly so it is not not enabled by default, as it can cause a lot of wakeups for very large session counts and cause a small performance drop.
Enable or disable the implicit HTTP/2 upgrade from an HTTP/1.x client connection.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
By default, HAProxy is able to implicitly upgrade an HTTP/1.x client connection to an HTTP/2 connection if the first request it receives from a given HTTP connection matches the HTTP/2 connection preface (i.e. the string "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"). This way, it is possible to support HTTP/1.x and HTTP/2 clients on a non-SSL connections. This option must be used to disable the implicit upgrade. Note this implicit upgrade is only supported for HTTP proxies, thus this option too. Note also it is possible to force the HTTP/2 on clear connections by specifying "proto h2" on the bind line. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable logging of normal, successful connections
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
There are large sites dealing with several thousand connections per second and for which logging is a major pain. Some of them are even forced to turn logs off and cannot debug production issues. Setting this option ensures that normal connections, those which experience no error, no timeout, no retry nor redispatch, will not be logged. This leaves disk space for anomalies. In HTTP mode, the response status code is checked and return codes 5xx will still be logged. It is strongly discouraged to use this option as most of the time, the key to complex issues is in the normal logs which will not be logged here. If you need to separate logs, see the "log-separate-errors" option instead.
Enable or disable logging of null connections
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
In certain environments, there are components which will regularly connect to various systems to ensure that they are still alive. It can be the case from another load balancer as well as from monitoring systems. By default, even a simple port probe or scan will produce a log. If those connections pollute the logs too much, it is possible to enable option "dontlognull" to indicate that a connection on which no data has been transferred will not be logged, which typically corresponds to those probes. Note that errors will still be returned to the client and accounted for in the stats. If this is not what is desired, option http-ignore-probes can be used instead. It is generally recommended not to use this option in uncontrolled environments (e.g. internet), otherwise scans and other malicious activities would not be logged. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable insertion of the X-Forwarded-For header to requests sent to servers
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<network> is an optional argument used to disable this option for sources matching <network> <name> an optional argument to specify a different "X-Forwarded-For" header name.
Since HAProxy works in reverse-proxy mode, the servers see its IP address as their client address. This is sometimes annoying when the client's IP address is expected in server logs. To solve this problem, the well-known HTTP header "X-Forwarded-For" may be added by HAProxy to all requests sent to the server. This header contains a value representing the client's IP address. Since this header is always appended at the end of the existing header list, the server must be configured to always use the last occurrence of this header only. See the server's manual to find how to enable use of this standard header. Note that only the last occurrence of the header must be used, since it is really possible that the client has already brought one. The keyword "header" may be used to supply a different header name to replace the default "X-Forwarded-For". This can be useful where you might already have a "X-Forwarded-For" header from a different application (e.g. stunnel), and you need preserve it. Also if your backend server doesn't use the "X-Forwarded-For" header and requires different one (e.g. Zeus Web Servers require "X-Cluster-Client-IP"). Sometimes, a same HAProxy instance may be shared between a direct client access and a reverse-proxy access (for instance when an SSL reverse-proxy is used to decrypt HTTPS traffic). It is possible to disable the addition of the header for a known source address or network by adding the "except" keyword followed by the network address. In this case, any source IP matching the network will not cause an addition of this header. Most common uses are with private networks or 127.0.0.1. Alternatively, the keyword "if-none" states that the header will only be added if it is not present. This should only be used in perfectly trusted environment, as this might cause a security issue if headers reaching haproxy are under the control of the end-user. Only IPv4 addresses are supported. "http-request add-header" or "http-request set-header" rules may be used to work around this limitation. This option may be specified either in the frontend or in the backend. If at least one of them uses it, the header will be added. Note that the backend's setting of the header subargument takes precedence over the frontend's if both are defined. In the case of the "if-none" argument, if at least one of the frontend or the backend does not specify it, it wants the addition to be mandatory, so it wins.
# Public HTTP address also used by stunnel on the same machine
frontend www
mode http
option forwardfor except 127.0.0.1 # stunnel already adds the header
# Those servers want the IP Address in X-Client
backend www
mode http
option forwardfor header X-Client
Enable or disable the case adjustment of HTTP/1 headers sent to bogus clients
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
There is no standard case for header names because, as stated in RFC7230, they are case-insensitive. So applications must handle them in a case- insensitive manner. But some bogus applications violate the standards and erroneously rely on the cases most commonly used by browsers. This problem becomes critical with HTTP/2 because all header names must be exchanged in lower case, and HAProxy follows the same convention. All header names are sent in lower case to clients and servers, regardless of the HTTP version. When HAProxy receives an HTTP/1 response, its header names are converted to lower case and manipulated and sent this way to the clients. If a client is known to violate the HTTP standards and to fail to process a response coming from HAProxy, it is possible to transform the lower case header names to a different format when the response is formatted and sent to the client, by enabling this option and specifying the list of headers to be reformatted using the global directives "h1-case-adjust" or "h1-case-adjust-file". This must only be a temporary workaround for the time it takes the client to be fixed, because clients which require such workarounds might be vulnerable to content smuggling attacks and must absolutely be fixed. Please note that this option will not affect standards-compliant clients. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable the case adjustment of HTTP/1 headers sent to bogus servers
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
There is no standard case for header names because, as stated in RFC7230, they are case-insensitive. So applications must handle them in a case- insensitive manner. But some bogus applications violate the standards and erroneously rely on the cases most commonly used by browsers. This problem becomes critical with HTTP/2 because all header names must be exchanged in lower case, and HAProxy follows the same convention. All header names are sent in lower case to clients and servers, regardless of the HTTP version. When HAProxy receives an HTTP/1 request, its header names are converted to lower case and manipulated and sent this way to the servers. If a server is known to violate the HTTP standards and to fail to process a request coming from HAProxy, it is possible to transform the lower case header names to a different format when the request is formatted and sent to the server, by enabling this option and specifying the list of headers to be reformatted using the global directives "h1-case-adjust" or "h1-case-adjust-file". This must only be a temporary workaround for the time it takes the server to be fixed, because servers which require such workarounds might be vulnerable to content smuggling attacks and must absolutely be fixed. Please note that this option will not affect standards-compliant servers. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable waiting for whole HTTP request body before proceeding
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
It is sometimes desirable to wait for the body of an HTTP request before taking a decision. This is what is being done by "balance url_param" for example. The first use case is to buffer requests from slow clients before connecting to the server. Another use case consists in taking the routing decision based on the request body's contents. This option placed in a frontend or backend forces the HTTP processing to wait until either the whole body is received, or the request buffer is full, or the first chunk is complete in case of chunked encoding. It can have undesired side effects with some applications abusing HTTP by expecting unbuffered transmissions between the frontend and the backend, so this should definitely not be used by default.
Enable or disable logging of null connections and request timeouts
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
Recently some browsers started to implement a "pre-connect" feature consisting in speculatively connecting to some recently visited web sites just in case the user would like to visit them. This results in many connections being established to web sites, which end up in 408 Request Timeout if the timeout strikes first, or 400 Bad Request when the browser decides to close them first. These ones pollute the log and feed the error counters. There was already "option dontlognull" but it's insufficient in this case. Instead, this option does the following things : - prevent any 400/408 message from being sent to the client if nothing was received over a connection before it was closed; - prevent any log from being emitted in this situation; - prevent any error counter from being incremented That way the empty connection is silently ignored. Note that it is better not to use this unless it is clear that it is needed, because it will hide real problems. The most common reason for not receiving a request and seeing a 408 is due to an MTU inconsistency between the client and an intermediary element such as a VPN, which blocks too large packets. These issues are generally seen with POST requests as well as GET with large cookies. The logs are often the only way to detect them. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable HTTP keep-alive from client to server
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
By default HAProxy operates in keep-alive mode with regards to persistent connections: for each connection it processes each request and response, and leaves the connection idle on both sides between the end of a response and the start of a new request. This mode may be changed by several options such as "option http-server-close", "option httpclose" or "option http-tunnel". This option allows to set back the keep-alive mode, which can be useful when another mode was used in a defaults section. Setting "option http-keep-alive" enables HTTP keep-alive mode on the client- and server- sides. This provides the lowest latency on the client side (slow network) and the fastest session reuse on the server side at the expense of maintaining idle connections to the servers. In general, it is possible with this option to achieve approximately twice the request rate that the "http-server-close" option achieves on small objects. There are mainly two situations where this option may be useful : - when the server is non-HTTP compliant and authenticates the connection instead of requests (e.g. NTLM authentication) - when the cost of establishing the connection to the server is significant compared to the cost of retrieving the associated object from the server. This last case can happen when the server is a fast static server of cache. In this case, the server will need to be properly tuned to support high enough connection counts because connections will last until the client sends another request. If the client request has to go to another backend or another server due to content switching or the load balancing algorithm, the idle connection will immediately be closed and a new one re-opened. Option "prefer-last-server" is available to try optimize server selection so that if the server currently attached to an idle connection is usable, it will be used. At the moment, logs will not indicate whether requests came from the same session or not. The accept date reported in the logs corresponds to the end of the previous request, and the request time corresponds to the time spent waiting for a new request. The keep-alive request time is still bound to the timeout defined by "timeout http-keep-alive" or "timeout http-request" if not set. This option disables and replaces any previous "option httpclose", "option http-server-close" or "option http-tunnel". When backend and frontend options differ, all of these 4 options have precedence over "option http-keep-alive".
Instruct the system to favor low interactive delays over performance in HTTP
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
In HTTP, each payload is unidirectional and has no notion of interactivity. Any agent is expected to queue data somewhat for a reasonably low delay. There are some very rare server-to-server applications that abuse the HTTP protocol and expect the payload phase to be highly interactive, with many interleaved data chunks in both directions within a single request. This is absolutely not supported by the HTTP specification and will not work across most proxies or servers. When such applications attempt to do this through haproxy, it works but they will experience high delays due to the network optimizations which favor performance by instructing the system to wait for enough data to be available in order to only send full packets. Typical delays are around 200 ms per round trip. Note that this only happens with abnormal uses. Normal uses such as CONNECT requests nor WebSockets are not affected. When "option http-no-delay" is present in either the frontend or the backend used by a connection, all such optimizations will be disabled in order to make the exchanges as fast as possible. Of course this offers no guarantee on the functionality, as it may break at any other place. But if it works via HAProxy, it will work as fast as possible. This option should never be used by default, and should never be used at all unless such a buggy application is discovered. The impact of using this option is an increase of bandwidth usage and CPU usage, which may significantly lower performance in high latency environments.
Define whether haproxy will announce keepalive to the server or not
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
When running with "option http-server-close" or "option httpclose", haproxy adds a "Connection: close" header to the request forwarded to the server. Unfortunately, when some servers see this header, they automatically refrain from using the chunked encoding for responses of unknown length, while this is totally unrelated. The immediate effect is that this prevents haproxy from maintaining the client connection alive. A second effect is that a client or a cache could receive an incomplete response without being aware of it, and consider the response complete. By setting "option http-pretend-keepalive", haproxy will make the server believe it will keep the connection alive. The server will then not fall back to the abnormal undesired above. When haproxy gets the whole response, it will close the connection with the server just as it would do with the "option httpclose". That way the client gets a normal response and the connection is correctly closed on the server side. It is recommended not to enable this option by default, because most servers will more efficiently close the connection themselves after the last packet, and release its buffers slightly earlier. Also, the added packet on the network could slightly reduce the overall peak performance. However it is worth noting that when this option is enabled, haproxy will have slightly less work to do. So if haproxy is the bottleneck on the whole architecture, enabling this option might save a few CPU cycles. This option may be set in backend and listen sections. Using it in a frontend section will be ignored and a warning will be reported during startup. It is a backend related option, so there is no real reason to set it on a frontend. This option may be combined with "option httpclose", which will cause keepalive to be announced to the server and close to be announced to the client. This practice is discouraged though. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable HTTP connection closing on the server side
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
By default HAProxy operates in keep-alive mode with regards to persistent connections: for each connection it processes each request and response, and leaves the connection idle on both sides between the end of a response and the start of a new request. This mode may be changed by several options such as "option http-server-close", "option httpclose" or "option http-tunnel". Setting "option http-server-close" enables HTTP connection-close mode on the server side while keeping the ability to support HTTP keep-alive and pipelining on the client side. This provides the lowest latency on the client side (slow network) and the fastest session reuse on the server side to save server resources, similarly to "option httpclose". It also permits non-keepalive capable servers to be served in keep-alive mode to the clients if they conform to the requirements of RFC7230. Please note that some servers do not always conform to those requirements when they see "Connection: close" in the request. The effect will be that keep-alive will never be used. A workaround consists in enabling "option http-pretend-keepalive". At the moment, logs will not indicate whether requests came from the same session or not. The accept date reported in the logs corresponds to the end of the previous request, and the request time corresponds to the time spent waiting for a new request. The keep-alive request time is still bound to the timeout defined by "timeout http-keep-alive" or "timeout http-request" if not set. This option may be set both in a frontend and in a backend. It is enabled if at least one of the frontend or backend holding a connection has it enabled. It disables and replaces any previous "option httpclose", "option http-tunnel" or "option http-keep-alive". Please check section 4 ("Proxies") to see how this option combines with others when frontend and backend options differ. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Disable or enable HTTP connection processing after first transaction.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
Warning : Because it cannot work in HTTP/2, this option is deprecated and it is only supported on legacy HTTP frontends. In HTX, it is ignored and a warning is emitted during HAProxy startup. By default HAProxy operates in keep-alive mode with regards to persistent connections: for each connection it processes each request and response, and leaves the connection idle on both sides between the end of a response and the start of a new request. This mode may be changed by several options such as "option http-server-close", "option httpclose" or "option http-tunnel". Option "http-tunnel" disables any HTTP processing past the first request and the first response. This is the mode which was used by default in versions 1.0 to 1.5-dev21. It is the mode with the lowest processing overhead, which is normally not needed anymore unless in very specific cases such as when using an in-house protocol that looks like HTTP but is not compatible, or just to log one request per client in order to reduce log size. Note that everything which works at the HTTP level, including header parsing/addition, cookie processing or content switching will only work for the first request and will be ignored after the first response. This option may be set on frontend and listen sections. Using it on a backend section will be ignored and a warning will be reported during the startup. It is a frontend related option, so there is no real reason to set it on a backend. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Make use of non-standard Proxy-Connection header instead of Connection
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
While RFC7230 explicitly states that HTTP/1.1 agents must use the Connection header to indicate their wish of persistent or non-persistent connections, both browsers and proxies ignore this header for proxied connections and make use of the undocumented, non-standard Proxy-Connection header instead. The issue begins when trying to put a load balancer between browsers and such proxies, because there will be a difference between what haproxy understands and what the client and the proxy agree on. By setting this option in a frontend, haproxy can automatically switch to use that non-standard header if it sees proxied requests. A proxied request is defined here as one where the URI begins with neither a '/' nor a '*'. This is incompatible with the HTTP tunnel mode. Note that this option can only be specified in a frontend and will affect the request along its whole life. Also, when this option is set, a request which requires authentication will automatically switch to use proxy authentication headers if it is itself a proxied request. That makes it possible to check or enforce authentication in front of an existing proxy. This option should normally never be used, except in front of a proxy.
Switch to the new HTX internal representation for HTTP protocol elements
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
Historically, the HTTP protocol is processed as-is. Inserting, deleting, or modifying a header field requires to rewrite the affected part in the buffer and to move the buffer's tail accordingly. This mode is known as the legacy HTTP mode. Since this principle has deep roots in haproxy, the HTTP/2 protocol is converted to HTTP/1.1 before being processed this way. It also results in the inability to establish HTTP/2 connections to servers because of the loss of HTTP/2 semantics in the HTTP/1 representation. HTX is the name of a totally new native internal representation for the HTTP protocol, that is agnostic to the version and aims at preserving semantics all along the chain. It relies on a fast parsing, tokenizing and indexing of the protocol elements so that no more memory moves are necessary and that most elements are directly accessed. It supports using either HTTP/1 or HTTP/2 on any side regardless of the other side's version. It also supports upgrades from TCP to HTTP and implicit ones from HTTP/1 to HTTP/2 (matching the HTTP/2 preface). This option indicates that HTX needs to be used. Since the version 2.0-dev3, the HTX is the default mode. To switch back on the legacy HTTP mode, the option must be explicitly disabled using the "no" prefix. For prior versions, the feature has incomplete functional coverage, so it is not enabled by default.
Enable HTTP protocol to check on the servers health
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<method> is the optional HTTP method used with the requests. When not set, the "OPTIONS" method is used, as it generally requires low server processing and is easy to filter out from the logs. Any method may be used, though it is not recommended to invent non-standard ones. <uri> is the URI referenced in the HTTP requests. It defaults to " / " which is accessible by default on almost any server, but may be changed to any other URI. Query strings are permitted. <version> is the optional HTTP version string. It defaults to "HTTP/1.0" but some servers might behave incorrectly in HTTP 1.0, so turning it to HTTP/1.1 may sometimes help. Note that the Host field is mandatory in HTTP/1.1, use "http-check send" directive to add it.
By default, server health checks only consist in trying to establish a TCP connection. When "option httpchk" is specified, a complete HTTP request is sent once the TCP connection is established, and responses 2xx and 3xx are considered valid, while all other ones indicate a server failure, including the lack of any response. The port and interval are specified in the server configuration. This option does not necessarily require an HTTP backend, it also works with plain TCP backends. This is particularly useful to check simple scripts bound to some dedicated ports using the inetd daemon. Note : For a while, there was no way to add headers or body in the request used for HTTP health checks. So a workaround was to hide it at the end of the version string with a "\r\n" after the version. It is now deprecated. The directive "http-check send" must be used instead.
# Relay HTTPS traffic to Apache instance and check service availability
# using HTTP request "OPTIONS * HTTP/1.1" on port 80.
backend https_relay
mode tcp
option httpchk OPTIONS * HTTP/1.1
http-check send hdr Host www
server apache1 192.168.1.1:443 check port 80
Enable or disable HTTP connection closing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
By default HAProxy operates in keep-alive mode with regards to persistent connections: for each connection it processes each request and response, and leaves the connection idle on both sides between the end of a response and the start of a new request. This mode may be changed by several options such as "option http-server-close", "option httpclose" or "option http-tunnel". If "option httpclose" is set, HAProxy will close connections with the server and the client as soon as the request and the response are received. It will also check if a "Connection: close" header is already set in each direction, and will add one if missing. Any "Connection" header different from "close" will also be removed. This option may also be combined with "option http-pretend-keepalive", which will disable sending of the "Connection: close" header, but will still cause the connection to be closed once the whole response is received. This option may be set both in a frontend and in a backend. It is enabled if at least one of the frontend or backend holding a connection has it enabled. It disables and replaces any previous "option http-server-close", "option http-keep-alive" or "option http-tunnel". Please check section 4 ("Proxies") to see how this option combines with others when frontend and backend options differ. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable logging of HTTP request, session state and timers
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
clf if the "clf" argument is added, then the output format will be the CLF format instead of HAProxy's default HTTP format. You can use this when you need to feed HAProxy's logs through a specific log analyzer which only support the CLF format and which is not extensible.
By default, the log output format is very poor, as it only contains the source and destination addresses, and the instance name. By specifying "option httplog", each log line turns into a much richer format including, but not limited to, the HTTP request, the connection timers, the session status, the connections numbers, the captured headers and cookies, the frontend, backend and server name, and of course the source address and ports. Specifying only "option httplog" will automatically clear the 'clf' mode if it was set by default. "option httplog" overrides any previous "log-format" directive.
Enable or disable plain HTTP proxy mode
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
It sometimes happens that people need a pure HTTP proxy which understands basic proxy requests without caching nor any fancy feature. In this case, it may be worth setting up an HAProxy instance with the "option http_proxy" set. In this mode, no server is declared, and the connection is forwarded to the IP address and port found in the URL after the "http://" scheme. No host address resolution is performed, so this only works when pure IP addresses are passed. Since this option's usage perimeter is rather limited, it will probably be used only by experts who know they need exactly it. This is incompatible with the HTTP tunnel mode. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
# this backend understands HTTP proxy requests and forwards them directly.
backend direct_forward
option httpclose
option http_proxy
Enable or disable independent timeout processing for both directions
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
By default, when data is sent over a socket, both the write timeout and the read timeout for that socket are refreshed, because we consider that there is activity on that socket, and we have no other means of guessing if we should receive data or not. While this default behavior is desirable for almost all applications, there exists a situation where it is desirable to disable it, and only refresh the read timeout if there are incoming data. This happens on sessions with large timeouts and low amounts of exchanged data such as telnet session. If the server suddenly disappears, the output data accumulates in the system's socket buffers, both timeouts are correctly refreshed, and there is no way to know the server does not receive them, so we don't timeout. However, when the underlying protocol always echoes sent data, it would be enough by itself to detect the issue using the read timeout. Note that this problem does not happen with more verbose protocols because data won't accumulate long in the socket buffers. When this option is set on the frontend, it will disable read timeout updates on data sent to the client. There probably is little use of this case. When the option is set on the backend, it will disable read timeout updates on data sent to the server. Doing so will typically break large HTTP posts from slow lines, so use it with caution. Note: older versions used to call this setting "option independant-streams" with a spelling mistake. This spelling is still supported but deprecated.
Use LDAPv3 health checks for server testing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
It is possible to test that the server correctly talks LDAPv3 instead of just testing that it accepts the TCP connection. When this option is set, an LDAPv3 anonymous simple bind message is sent to the server, and the response is analyzed to find an LDAPv3 bind response message. The server is considered valid only when the LDAP response contains success resultCode (http://tools.ietf.org/html/rfc4511#section-4.1.9). Logging of bind requests is server dependent see your documentation how to configure it.
option ldap-check
Use external processes for server health checks
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
It is possible to test the health of a server using an external command.
This is achieved by running the executable set using "external-check
command".
Requires the "external-check" global to be set.
Enable or disable logging of health checks status updates
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
By default, failed health check are logged if server is UP and successful health checks are logged if server is DOWN, so the amount of additional information is limited. When this option is enabled, any change of the health check status or to the server's health will be logged, so that it becomes possible to know that a server was failing occasional checks before crashing, or exactly when it failed to respond a valid HTTP status, then when the port started to reject connections, then when the server stopped responding at all. Note that status changes not caused by health checks (e.g. enable/disable on the CLI) are intentionally not logged by this option.
Change log level for non-completely successful connections
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
Sometimes looking for errors in logs is not easy. This option makes haproxy raise the level of logs containing potentially interesting information such as errors, timeouts, retries, redispatches, or HTTP status codes 5xx. The level changes from "info" to "err". This makes it possible to log them separately to a different file with most syslog daemons. Be careful not to remove them from the original file, otherwise you would lose ordering which provides very important information. Using this option, large sites dealing with several thousand connections per second may log normal traffic to a rotating buffer and only archive smaller error logs.
Enable or disable early logging.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
By default, logs are emitted when all the log format variables and sample fetches used in the definition of the log-format string return a value, or when the session is terminated. This allows the built in log-format strings to account for the transfer time, or the number of bytes in log messages. When handling long lived connections such as large file transfers or RDP, it may take a while for the request or connection to appear in the logs. Using "option logasap", the log message is created as soon as the server connection is established in mode tcp, or as soon as the server sends the complete headers in mode http. Missing information in the logs will be the total number of bytes which will only indicate the amount of data transfered before the message was created and the total time which will not take the remainder of the connection life or transfer time into account. For the case of HTTP, it is good practice to capture the Content-Length response header so that the logs at least indicate how many bytes are expected to be transfered.
listen http_proxy 0.0.0.0:80
mode http
option httplog
option logasap
log 192.168.2.200 local3
>>> Feb 6 12:14:14 localhost \
haproxy[14389]: 10.0.1.2:33317 [06/Feb/2009:12:14:14.655] http-in \
static/srv1 9/10/7/14/+30 200 +243 - - ---- 3/1/1/1/0 1/0 \
"GET /image.iso HTTP/1.0"
Use MySQL health checks for server testing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<username> This is the username which will be used when connecting to MySQL server. post-41 Send post v4.1 client compatible checks
If you specify a username, the check consists of sending two MySQL packet,
one Client Authentication packet, and one QUIT packet, to correctly close
MySQL session. We then parse the MySQL Handshake Initialization packet and/or
Error packet. It is a basic but useful test which does not produce error nor
aborted connect on the server. However, it requires an unlocked authorised
user without a password. To create a basic limited user in MySQL with
optional resource limits:
CREATE USER '<username>'@'<ip_of_haproxy|network_of_haproxy/netmask>'
/*!50701 WITH MAX_QUERIES_PER_HOUR 1 MAX_UPDATES_PER_HOUR 0 */
/*M!100201 MAX_STATEMENT_TIME 0.0001 */;
If you don't specify a username (it is deprecated and not recommended), the
check only consists in parsing the Mysql Handshake Initialization packet or
Error packet, we don't send anything in this mode. It was reported that it
can generate lockout if check is too frequent and/or if there is not enough
traffic. In fact, you need in this case to check MySQL "max_connect_errors"
value as if a connection is established successfully within fewer than MySQL
"max_connect_errors" attempts after a previous connection was interrupted,
the error count for the host is cleared to zero. If HAProxy's server get
blocked, the "FLUSH HOSTS" statement is the only way to unblock it.
Remember that this does not check database presence nor database consistency.
To do this, you can use an external check with xinetd for example.
The check requires MySQL >=3.22, for older version, please use TCP check.
Most often, an incoming MySQL server needs to see the client's IP address for
various purposes, including IP privilege matching and connection logging.
When possible, it is often wise to masquerade the client's IP address when
connecting to the server using the "usesrc" argument of the "source" keyword,
which requires the transparent proxy feature to be compiled in, and the MySQL
server to route the client via the machine hosting haproxy.
Enable or disable immediate session resource cleaning after close
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
When clients or servers abort connections in a dirty way (e.g. they are physically disconnected), the session timeouts triggers and the session is closed. But it will remain in FIN_WAIT1 state for some time in the system, using some resources and possibly limiting the ability to establish newer connections. When this happens, it is possible to activate "option nolinger" which forces the system to immediately remove any socket's pending data on close. Thus, the session is instantly purged from the system's tables. This usually has side effects such as increased number of TCP resets due to old retransmits getting immediately rejected. Some firewalls may sometimes complain about this too. For this reason, it is not recommended to use this option when not absolutely needed. You know that you need it when you have thousands of FIN_WAIT1 sessions on your system (TIME_WAIT ones do not count). This option may be used both on frontends and backends, depending on the side where it is required. Use it on the frontend for clients, and on the backend for servers. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable insertion of the X-Original-To header to requests sent to servers
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
<network> is an optional argument used to disable this option for sources matching <network> <name> an optional argument to specify a different "X-Original-To" header name.
Since HAProxy can work in transparent mode, every request from a client can be redirected to the proxy and HAProxy itself can proxy every request to a complex SQUID environment and the destination host from SO_ORIGINAL_DST will be lost. This is annoying when you want access rules based on destination ip addresses. To solve this problem, a new HTTP header "X-Original-To" may be added by HAProxy to all requests sent to the server. This header contains a value representing the original destination IP address. Since this must be configured to always use the last occurrence of this header only. Note that only the last occurrence of the header must be used, since it is really possible that the client has already brought one. The keyword "header" may be used to supply a different header name to replace the default "X-Original-To". This can be useful where you might already have a "X-Original-To" header from a different application, and you need preserve it. Also if your backend server doesn't use the "X-Original-To" header and requires different one. Sometimes, a same HAProxy instance may be shared between a direct client access and a reverse-proxy access (for instance when an SSL reverse-proxy is used to decrypt HTTPS traffic). It is possible to disable the addition of the header for a known source address or network by adding the "except" keyword followed by the network address. In this case, any source IP matching the network will not cause an addition of this header. Most common uses are with private networks or 127.0.0.1. Only IPv4 addresses are supported. "http-request add-header" or "http-request set-header" rules may be used to work around this limitation. This option may be specified either in the frontend or in the backend. If at least one of them uses it, the header will be added. Note that the backend's setting of the header subargument takes precedence over the frontend's if both are defined.
# Original Destination address
frontend www
mode http
option originalto except 127.0.0.1
# Those servers want the IP Address in X-Client-Dst
backend www
mode http
option originalto header X-Client-Dst
Enable or disable forced persistence on down servers
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
When an HTTP request reaches a backend with a cookie which references a dead server, by default it is redispatched to another server. It is possible to force the request to be sent to the dead server first using "option persist" if absolutely needed. A common use case is when servers are under extreme load and spend their time flapping. In this case, the users would still be directed to the server they opened the session on, in the hope they would be correctly served. It is recommended to use "option redispatch" in conjunction with this option so that in the event it would not be possible to connect to the server at all (server definitely dead), the client would finally be redirected to another valid server. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Use PostgreSQL health checks for server testing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<username> This is the username which will be used when connecting to PostgreSQL server.
The check sends a PostgreSQL StartupMessage and waits for either Authentication request or ErrorResponse message. It is a basic but useful test which does not produce error nor aborted connect on the server. This check is identical with the "mysql-check".
Allow multiple load balanced requests to remain on the same server
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
When the load balancing algorithm in use is not deterministic, and a previous request was sent to a server to which haproxy still holds a connection, it is sometimes desirable that subsequent requests on a same session go to the same server as much as possible. Note that this is different from persistence, as we only indicate a preference which haproxy tries to apply without any form of warranty. The real use is for keep-alive connections sent to servers. When this option is used, haproxy will try to reuse the same connection that is attached to the server instead of rebalancing to another server, causing a close of the connection. This can make sense for static file servers. It does not make much sense to use this in combination with hashing algorithms. Note, haproxy already automatically tries to stick to a server which sends a 401 or to a proxy which sends a 407 (authentication required), when the load balancing algorithm is not deterministic. This is mandatory for use with the broken NTLM authentication challenge, and significantly helps in troubleshooting some faulty applications. Option prefer-last-server might be desirable in these environments as well, to avoid redistributing the traffic after every other response. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable session redistribution in case of connection failure
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<interval> The optional integer value that controls how often redispatches occur when retrying connections. Positive value P indicates a redispatch is desired on every Pth retry, and negative value N indicate a redispatch is desired on the Nth retry prior to the last retry. For example, the default of -1 preserves the historical behavior of redispatching on the last retry, a positive value of 1 would indicate a redispatch on every retry, and a positive value of 3 would indicate a redispatch on every third retry. You can disable redispatches with a value of 0.
In HTTP mode, if a server designated by a cookie is down, clients may definitely stick to it because they cannot flush the cookie, so they will not be able to access the service anymore. Specifying "option redispatch" will allow the proxy to break cookie or consistent hash based persistence and redistribute them to a working server. It also allows to retry connections to another server in case of multiple connection failures. Of course, it requires having "retries" set to a nonzero value. This form is the preferred form, which replaces both the "redispatch" and "redisp" keywords. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Use redis health checks for server testing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
It is possible to test that the server correctly talks REDIS protocol instead of just testing that it accepts the TCP connection. When this option is set, a PING redis command is sent to the server, and the response is analyzed to find the "+PONG" response message.
option redis-check
Use SMTP health checks for server testing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<hello> is an optional argument. It is the "hello" command to use. It can be either "HELO" (for SMTP) or "EHLO" (for ESMTP). All other values will be turned into the default command ("HELO"). <domain> is the domain name to present to the server. It may only be specified (and is mandatory) if the hello command has been specified. By default, "localhost" is used.
When "option smtpchk" is set, the health checks will consist in TCP connections followed by an SMTP command. By default, this command is "HELO localhost". The server's return code is analyzed and only return codes starting with a "2" will be considered as valid. All other responses, including a lack of response will constitute an error and will indicate a dead server. This test is meant to be used with SMTP servers or relays. Depending on the request, it is possible that some servers do not log each connection attempt, so you may want to experiment to improve the behavior. Using telnet on port 25 is often easier than adjusting the configuration. Most often, an incoming SMTP server needs to see the client's IP address for various purposes, including spam filtering, anti-spoofing and logging. When possible, it is often wise to masquerade the client's IP address when connecting to the server using the "usesrc" argument of the "source" keyword, which requires the transparent proxy feature to be compiled in.
option smtpchk HELO mydomain.org
Enable or disable collecting & providing separate statistics for each socket.
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
Enable or disable automatic kernel acceleration on sockets in both directions
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
When this option is enabled either on a frontend or on a backend, haproxy will automatically evaluate the opportunity to use kernel tcp splicing to forward data between the client and the server, in either direction. HAProxy uses heuristics to estimate if kernel splicing might improve performance or not. Both directions are handled independently. Note that the heuristics used are not much aggressive in order to limit excessive use of splicing. This option requires splicing to be enabled at compile time, and may be globally disabled with the global option "nosplice". Since splice uses pipes, using it requires that there are enough spare pipes. Important note: kernel-based TCP splicing is a Linux-specific feature which first appeared in kernel 2.6.25. It offers kernel-based acceleration to transfer data between sockets without copying these data to user-space, thus providing noticeable performance gains and CPU cycles savings. Since many early implementations are buggy, corrupt data and/or are inefficient, this feature is not enabled by default, and it should be used with extreme care. While it is not possible to detect the correctness of an implementation, 2.6.29 is the first version offering a properly working implementation. In case of doubt, splicing may be globally disabled using the global "nosplice" keyword.
option splice-auto
If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable automatic kernel acceleration on sockets for requests
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
When this option is enabled either on a frontend or on a backend, haproxy will use kernel tcp splicing whenever possible to forward data going from the client to the server. It might still use the recv/send scheme if there are no spare pipes left. This option requires splicing to be enabled at compile time, and may be globally disabled with the global option "nosplice". Since splice uses pipes, using it requires that there are enough spare pipes. Important note: see "option splice-auto" for usage limitations.
option splice-request
If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable automatic kernel acceleration on sockets for responses
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
When this option is enabled either on a frontend or on a backend, haproxy will use kernel tcp splicing whenever possible to forward data going from the server to the client. It might still use the recv/send scheme if there are no spare pipes left. This option requires splicing to be enabled at compile time, and may be globally disabled with the global option "nosplice". Since splice uses pipes, using it requires that there are enough spare pipes. Important note: see "option splice-auto" for usage limitations.
option splice-response
If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Use SPOP health checks for server testing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
It is possible to test that the server correctly talks SPOP protocol instead of just testing that it accepts the TCP connection. When this option is set, a HELLO handshake is performed between HAProxy and the server, and the response is analyzed to check no error is reported.
option spop-check
Enable or disable the sending of TCP keepalive packets on the server side
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
When there is a firewall or any session-aware component between a client and a server, and when the protocol involves very long sessions with long idle periods (e.g. remote desktops), there is a risk that one of the intermediate components decides to expire a session which has remained idle for too long. Enabling socket-level TCP keep-alives makes the system regularly send packets to the other end of the connection, leaving it active. The delay between keep-alive probes is controlled by the system only and depends both on the operating system and its tuning parameters. It is important to understand that keep-alive packets are neither emitted nor received at the application level. It is only the network stacks which sees them. For this reason, even if one side of the proxy already uses keep-alives to maintain its connection alive, those keep-alive packets will not be forwarded to the other side of the proxy. Please note that this has nothing to do with HTTP keep-alive. Using option "srvtcpka" enables the emission of TCP keep-alive probes on the server side of a connection, which should help when session expirations are noticed between HAProxy and a server. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Use SSLv3 client hello health checks for server testing
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
When some SSL-based protocols are relayed in TCP mode through HAProxy, it is possible to test that the server correctly talks SSL instead of just testing that it accepts the TCP connection. When "option ssl-hello-chk" is set, pure SSLv3 client hello messages are sent once the connection is established to the server, and the response is analyzed to find an SSL server hello message. The server is considered valid only when the response contains this server hello message. All servers tested till there correctly reply to SSLv3 client hello messages, and most servers tested do not even log the requests containing only hello messages, which is appreciable. Note that this check works even when SSL support was not built into haproxy because it forges the SSL message. When SSL support is available, it is best to use native SSL health checks instead of this one.
Perform health checks using tcp-check send/expect sequences
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
This health check method is intended to be combined with "tcp-check" command lists in order to support send/expect types of health check sequences. TCP checks currently support 4 modes of operations : - no "tcp-check" directive : the health check only consists in a connection attempt, which remains the default mode. - "tcp-check send" or "tcp-check send-binary" only is mentioned : this is used to send a string along with a connection opening. With some protocols, it helps sending a "QUIT" message for example that prevents the server from logging a connection error for each health check. The check result will still be based on the ability to open the connection only. - "tcp-check expect" only is mentioned : this is used to test a banner. The connection is opened and haproxy waits for the server to present some contents which must validate some rules. The check result will be based on the matching between the contents and the rules. This is suited for POP, IMAP, SMTP, FTP, SSH, TELNET. - both "tcp-check send" and "tcp-check expect" are mentioned : this is used to test a hello-type protocol. HAProxy sends a message, the server responds and its response is analyzed. the check result will be based on the matching between the response contents and the rules. This is often suited for protocols which require a binding or a request/response model. LDAP, MySQL, Redis and SSL are example of such protocols, though they already all have their dedicated checks with a deeper understanding of the respective protocols. In this mode, many questions may be sent and many answers may be analyzed. A fifth mode can be used to insert comments in different steps of the script. For each tcp-check rule you create, you can add a "comment" directive, followed by a string. This string will be reported in the log and stderr in debug mode. It is useful to make user-friendly error reporting. The "comment" is of course optional.
# perform a POP check (analyze only server's banner)
option tcp-check
tcp-check expect string +OK\ POP3\ ready comment POP\ protocol
# perform an IMAP check (analyze only server's banner)
option tcp-check
tcp-check expect string *\ OK\ IMAP4\ ready comment IMAP\ protocol
# look for the redis master server after ensuring it speaks well
# redis protocol, then it exits properly.
# (send a command then analyze the response 3 times)
option tcp-check
tcp-check comment PING\ phase
tcp-check send PING\r\n
tcp-check expect string +PONG
tcp-check comment role\ check
tcp-check send info\ replication\r\n
tcp-check expect string role:master
tcp-check comment QUIT\ phase
tcp-check send QUIT\r\n
tcp-check expect string +OK
forge a HTTP request, then analyze the response
(send many headers before analyzing)
option tcp-check
tcp-check comment forge\ and\ send\ HTTP\ request
tcp-check send HEAD\ /\ HTTP/1.1\r\n
tcp-check send Host:\ www.mydomain.com\r\n
tcp-check send User-Agent:\ HAProxy\ tcpcheck\r\n
tcp-check send \r\n
tcp-check expect rstring HTTP/1\..\ (2..|3..) comment check\ HTTP\ response
Enable or disable the saving of one ACK packet during the accept sequence
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
When an HTTP connection request comes in, the system acknowledges it on behalf of HAProxy, then the client immediately sends its request, and the system acknowledges it too while it is notifying HAProxy about the new connection. HAProxy then reads the request and responds. This means that we have one TCP ACK sent by the system for nothing, because the request could very well be acknowledged by HAProxy when it sends its response. For this reason, in HTTP mode, HAProxy automatically asks the system to avoid sending this useless ACK on platforms which support it (currently at least Linux). It must not cause any problem, because the system will send it anyway after 40 ms if the response takes more time than expected to come. During complex network debugging sessions, it may be desirable to disable this optimization because delayed ACKs can make troubleshooting more complex when trying to identify where packets are delayed. It is then possible to fall back to normal behavior by specifying "no option tcp-smart-accept". It is also possible to force it for non-HTTP proxies by simply specifying "option tcp-smart-accept". For instance, it can make sense with some services such as SMTP where the server speaks first. It is recommended to avoid forcing this option in a defaults section. In case of doubt, consider setting it back to automatic values by prepending the "default" keyword before it, or disabling it using the "no" keyword.
Enable or disable the saving of one ACK packet during the connect sequence
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
On certain systems (at least Linux), HAProxy can ask the kernel not to immediately send an empty ACK upon a connection request, but to directly send the buffer request instead. This saves one packet on the network and thus boosts performance. It can also be useful for some servers, because they immediately get the request along with the incoming connection. This feature is enabled when "option tcp-smart-connect" is set in a backend. It is not enabled by default because it makes network troubleshooting more complex. It only makes sense to enable it with protocols where the client speaks first such as HTTP. In other situations, if there is no data to send in place of the ACK, a normal ACK is sent. If this option has been enabled in a "defaults" section, it can be disabled in a specific instance by prepending the "no" keyword before it.
Enable or disable the sending of TCP keepalive packets on both sides
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | yes |
When there is a firewall or any session-aware component between a client and a server, and when the protocol involves very long sessions with long idle periods (e.g. remote desktops), there is a risk that one of the intermediate components decides to expire a session which has remained idle for too long. Enabling socket-level TCP keep-alives makes the system regularly send packets to the other end of the connection, leaving it active. The delay between keep-alive probes is controlled by the system only and depends both on the operating system and its tuning parameters. It is important to understand that keep-alive packets are neither emitted nor received at the application level. It is only the network stacks which sees them. For this reason, even if one side of the proxy already uses keep-alives to maintain its connection alive, those keep-alive packets will not be forwarded to the other side of the proxy. Please note that this has nothing to do with HTTP keep-alive. Using option "tcpka" enables the emission of TCP keep-alive probes on both the client and server sides of a connection. Note that this is meaningful only in "defaults" or "listen" sections. If this option is used in a frontend, only the client side will get keep-alives, and if this option is used in a backend, only the server side will get keep-alives. For this reason, it is strongly recommended to explicitly use "option clitcpka" and "option srvtcpka" when the configuration is split between frontends and backends.
Enable advanced logging of TCP connections with session state and timers
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
By default, the log output format is very poor, as it only contains the source and destination addresses, and the instance name. By specifying "option tcplog", each log line turns into a much richer format including, but not limited to, the connection timers, the session status, the connections numbers, the frontend, backend and server name, and of course the source address and ports. This option is useful for pure TCP proxies in order to find which of the client or server disconnects or times out. For normal HTTP proxies, it's better to use "option httplog" which is even more complete. "option tcplog" overrides any previous "log-format" directive.
Enable client-side transparent proxying
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
This option was introduced in order to provide layer 7 persistence to layer 3 load balancers. The idea is to use the OS's ability to redirect an incoming connection for a remote address to a local process (here HAProxy), and let this process know what address was initially requested. When this option is used, sessions without cookies will be forwarded to the original destination IP address of the incoming request (which should match that of another equipment), while requests with cookies will still be forwarded to the appropriate server. Note that contrary to a common belief, this option does NOT make HAProxy present the client's IP to the server when establishing the connection.
Executable to run when performing an external-check
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<command> is the external command to run
The arguments passed to the to the command are: <proxy_address> <proxy_port> <server_address> <server_port> The <proxy_address> and <proxy_port> are derived from the first listener that is either IPv4, IPv6 or a UNIX socket. In the case of a UNIX socket listener the proxy_address will be the path of the socket and the <proxy_port> will be the string "NOT_USED". In a backend section, it's not possible to determine a listener, and both <proxy_address> and <proxy_port> will have the string value "NOT_USED". Some values are also provided through environment variables. Environment variables : HAPROXY_PROXY_ADDR The first bind address if available (or empty if not applicable, for example in a "backend" section). HAPROXY_PROXY_ID The backend id. HAPROXY_PROXY_NAME The backend name. HAPROXY_PROXY_PORT The first bind port if available (or empty if not applicable, for example in a "backend" section or for a UNIX socket). HAPROXY_SERVER_ADDR The server address. HAPROXY_SERVER_CURCONN The current number of connections on the server. HAPROXY_SERVER_ID The server id. HAPROXY_SERVER_MAXCONN The server max connections. HAPROXY_SERVER_NAME The server name. HAPROXY_SERVER_PORT The server port if available (or empty for a UNIX socket). PATH The PATH environment variable used when executing the command may be set using "external-check path". See also "2.3. Environment variables" for other variables. If the command executed and exits with a zero status then the check is considered to have passed, otherwise the check is considered to have failed.
external-check command /bin/true
The value of the PATH environment variable used when running an external-check
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<path> is the path used when executing external command to run
The default path is "".
external-check path "/usr/bin:/bin"
Enable RDP cookie-based persistence
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
<name> is the optional name of the RDP cookie to check. If omitted, the default cookie name "msts" will be used. There currently is no valid reason to change this name.
This statement enables persistence based on an RDP cookie. The RDP cookie contains all information required to find the server in the list of known servers. So when this option is set in the backend, the request is analyzed and if an RDP cookie is found, it is decoded. If it matches a known server which is still UP (or if "option persist" is set), then the connection is forwarded to this server. Note that this only makes sense in a TCP backend, but for this to work, the frontend must have waited long enough to ensure that an RDP cookie is present in the request buffer. This is the same requirement as with the "rdp-cookie" load-balancing method. Thus it is highly recommended to put all statements in a single "listen" section. Also, it is important to understand that the terminal server will emit this RDP cookie only if it is configured for "token redirection mode", which means that the "IP address redirection" option is disabled.
listen tse-farm
bind :3389
# wait up to 5s for an RDP cookie in the request
tcp-request inspect-delay 5s
tcp-request content accept if RDP_COOKIE
# apply RDP cookie persistence
persist rdp-cookie
# if server is unknown, let's balance on the same cookie.
# alternatively, "balance leastconn" may be useful too.
balance rdp-cookie
server srv1 1.1.1.1:3389
server srv2 1.1.1.2:3389
Set a limit on the number of new sessions accepted per second on a frontend
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | yes | yes | no |
<rate> The <rate> parameter is an integer designating the maximum number of new sessions per second to accept on the frontend.
When the frontend reaches the specified number of new sessions per second, it
stops accepting new connections until the rate drops below the limit again.
During this time, the pending sessions will be kept in the socket's backlog
(in system buffers) and haproxy will not even be aware that sessions are
pending. When applying very low limit on a highly loaded service, it may make
sense to increase the socket's backlog using the "backlog" keyword.
This feature is particularly efficient at blocking connection-based attacks
or service abuse on fragile servers. Since the session rate is measured every
millisecond, it is extremely accurate. Also, the limit applies immediately,
no delay is needed at all to detect the threshold.
Limit the connection rate on SMTP to 10 per second maxlisten smtp mode tcp bind :25 rate-limit sessions 10 server smtp1 127.0.0.1:1025
Note : when the maximum rate is reached, the frontend's status is not changed but its sockets appear as "WAITING" in the statistics if the "socket-stats" option is enabled.
Return an HTTP redirection if/unless a condition is matched
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
If/unless the condition is matched, the HTTP request will lead to a redirect response. If no condition is specified, the redirect applies unconditionally.
<loc> With "redirect location", the exact value in <loc> is placed into the HTTP "Location" header. When used in an "http-request" rule, <loc> value follows the log-format rules and can include some dynamic values (see Custom Log Format in section 8.2.4). <pfx> With "redirect prefix", the "Location" header is built from the concatenation of <pfx> and the complete URI path, including the query string, unless the "drop-query" option is specified (see below). As a special case, if <pfx> equals exactly "/", then nothing is inserted before the original URI. It allows one to redirect to the same URL (for instance, to insert a cookie). When used in an "http-request" rule, <pfx> value follows the log-format rules and can include some dynamic values (see Custom Log Format in section 8.2.4). <sch> With "redirect scheme", then the "Location" header is built by concatenating <sch> with "://" then the first occurrence of the "Host" header, and then the URI path, including the query string unless the "drop-query" option is specified (see below). If no path is found or if the path is "*", then "/" is used instead. If no "Host" header is found, then an empty host component will be returned, which most recent browsers interpret as redirecting to the same host. This directive is mostly used to redirect HTTP to HTTPS. When used in an "http-request" rule, <sch> value follows the log-format rules and can include some dynamic values (see Custom Log Format in section 8.2.4). <code> The code is optional. It indicates which type of HTTP redirection is desired. Only codes 301, 302, 303, 307 and 308 are supported, with 302 used by default if no code is specified. 301 means "Moved permanently", and a browser may cache the Location. 302 means "Moved temporarily" and means that the browser should not cache the redirection. 303 is equivalent to 302 except that the browser will fetch the location with a GET method. 307 is just like 302 but makes it clear that the same method must be reused. Likewise, 308 replaces 301 if the same method must be used. <option> There are several options which can be specified to adjust the expected behavior of a redirection : - "drop-query" When this keyword is used in a prefix-based redirection, then the location will be set without any possible query-string, which is useful for directing users to a non-secure page for instance. It has no effect with a location-type redirect. - "append-slash" This keyword may be used in conjunction with "drop-query" to redirect users who use a URL not ending with a '/' to the same one with the '/'. It can be useful to ensure that search engines will only see one URL. For this, a return code 301 is preferred. - "set-cookie NAME[=value]" A "Set-Cookie" header will be added with NAME (and optionally "=value") to the response. This is sometimes used to indicate that a user has been seen, for instance to protect against some types of DoS. No other cookie option is added, so the cookie will be a session cookie. Note that for a browser, a sole cookie name without an equal sign is different from a cookie with an equal sign. - "clear-cookie NAME[=]" A "Set-Cookie" header will be added with NAME (and optionally "="), but with the "Max-Age" attribute set to zero. This will tell the browser to delete this cookie. It is useful for instance on logout pages. It is important to note that clearing the cookie "NAME" will not remove a cookie set with "NAME=value". You have to clear the cookie "NAME=" for that, because the browser makes the difference.
Move the login URL only to HTTPS.acl clear dst_port 80 acl secure dst_port 8080 acl login_page url_beg /login acl logout url_beg /logout acl uid_given url_reg /login?userid=[^&]+ acl cookie_set hdr_sub(cookie) SEEN=1 redirect prefix https://mysite.com set-cookie SEEN=1 if !cookie_set redirect prefix https://mysite.com if login_page !secure redirect prefix http://mysite.com drop-query if login_page !uid_given redirect location http://mysite.com/ if !login_page secure redirect location / clear-cookie USERID= if logout
Send redirects for request for articles without a '/'.acl missing_slash path_reg ^/article/[^/]*$ redirect code 301 prefix / drop-query append-slash if missing_slash
Redirect all HTTP traffic to HTTPS when SSL is handled by haproxy.redirect scheme https if !{ ssl_fc }
Append 'www.' prefix in front of all hosts not having ithttp-request redirect code 301 location \ http://www.%[hdr(host)]%[capture.req.uri] \ unless { hdr_beg(host) -i www }
See section 7 about ACL usage.
Enable or disable session redistribution in case of connection failure
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
yes | no | yes | yes |
In HTTP mode, if a server designated by a cookie is down, clients may definitely stick to it because they cannot flush the cookie, so they will not be able to access the service anymore. Specifying "redispatch" will allow the proxy to break their persistence and redistribute them to a working server. It also allows to retry last connection to another server in case of multiple connection failures. Of course, it requires having "retries" set to a nonzero value. This form is deprecated, do not use it in any new configuration, use the new "option redispatch" instead.
Add a header at the end of the HTTP request
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
<string> is the complete line to be added. Any space or known delimiter must be escaped using a backslash ('\'). Please refer to section 6 about HTTP header manipulation for more information. <cond> is an optional matching condition built from ACLs. It makes it possible to ignore this rule when other conditions are not met.
A new line consisting in <string> followed by a line feed will be added after the last header of an HTTP request. Header transformations only apply to traffic which passes through HAProxy, and not to traffic generated by HAProxy, such as health-checks or error responses.
Add "X-Proto: SSL" to requests coming via port 81acl is-ssl dst_port 81 reqadd X-Proto:\ SSL if is-ssl
Definitely allow an HTTP request if a line matches a regular expression
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
<search> is the regular expression applied to HTTP headers and to the request line. This is an extended regular expression. Parenthesis grouping is supported and no preliminary backslash is required. Any space or known delimiter must be escaped using a backslash ('\'). The pattern applies to a full line at a time. The "reqallow" keyword strictly matches case while "reqiallow" ignores case. <cond> is an optional matching condition built from ACLs. It makes it possible to ignore this rule when other conditions are not met.
A request containing any line which matches extended regular expression <search> will mark the request as allowed, even if any later test would result in a deny. The test applies both to the request line and to request headers. Keep in mind that URLs in request line are case-sensitive while header names are not. It is easier, faster and more powerful to use ACLs to write access policies. Reqdeny, reqallow and reqpass should be avoided in new designs.
# allow www.* but refuse *.local
reqiallow ^Host:\ www\.
reqideny ^Host:\ .*\.local
Delete all headers matching a regular expression in an HTTP request
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes | yes |
<search> is the regular expression applied to HTTP headers and to the request line. This is an extended regular expression. Parenthesis grouping is supported and no preliminary backslash is required. Any space or known delimiter must be escaped using a backslash ('\'). The pattern applies to a full line at a time. The "reqdel" keyword strictly matches case while "reqidel" ignores case. <cond> is an optional matching condition built from ACLs. It makes it possible to ignore this rule when other conditions are not met.
Any header line matching extended regular expression <search> in the request will be completely deleted. Most common use of this is to remove unwanted and/or dangerous headers or cookies from a request before passing it to the next servers. Header transformations only apply to traffic which passes through HAProxy, and not to traffic generated by HAProxy, such as health-checks or error responses. Keep in mind that header names are not case-sensitive.
# remove X-Forwarded-For header and SERVER cookie
reqidel ^X-Forwarded-For:.*
reqidel ^Cookie:.*SERVER=
Deny an HTTP request if a line matches a regular expression
May be used in sections :
defaults | frontend | listen | backend |
---|---|---|---|
no | yes | yes |